• Laser & Optoelectronics Progress
  • Vol. 59, Issue 10, 1017001 (2022)
Yue Zou1、2, Huajiang Wei1、2、*, Hongqin Yang3, Shusen Xie3, and Guoyong Wu4
Author Affiliations
  • 1Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou 510631, Guangdong , China
  • 2Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, Guangdong , China
  • 3Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007, Fujian , China
  • 4Department of Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong , China
  • show less
    DOI: 10.3788/LOP202259.1017001 Cite this Article Set citation alerts
    Yue Zou, Huajiang Wei, Hongqin Yang, Shusen Xie, Guoyong Wu. Effect of Pulsed Ultrasonic Intensities on Glycerol Permeability and Light Penetration Depth in Human Skin in vivo[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1017001 Copy Citation Text show less
    References

    [1] Prausnitz M R, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery[J]. Nature Reviews Drug Discovery, 3, 115-124(2004).

    [2] Zaffaroni A. Overview and evolution of therapeutic systems[J]. Annals of the New York Academy of Sciences, 618, 405-421(1991).

    [3] Cai B, Söderkvist K, Engqvist H et al. A new drug release method in early development of transdermal drug delivery systems[J]. Pain Research and Treatment, 2012, 953140(2012).

    [4] Prausnitz M R, Langer R. Transdermal drug delivery[J]. Nature Biotechnology, 26, 1261-1268(2008).

    [5] Bouwstra J A, Honeywell-Nguyen P L, Gooris G S et al. Structure of the skin barrier and its modulation by vesicular formulations[J]. Progress in Lipid Research, 42, 1-36(2003).

    [6] Lavon I, Kost J. Ultrasound and transdermal drug delivery[J]. Drug Discovery Today, 9, 670-676(2004).

    [7] Ogura M, Paliwal S, Mitragotri S. Low-frequency sonophoresis: current status and future prospects[J]. Advanced Drug Delivery Reviews, 60, 1218-1223(2008).

    [8] Lee S, McAuliffe D J, Flotte T J et al. Photomechanical transcutaneous delivery of macromolecules[J]. Journal of Investigative Dermatology, 111, 925-929(1998).

    [9] Karande P, Mitragotri S. Dependence of skin permeability on contact area[J]. Pharmaceutical Research, 20, 257-263(2003).

    [10] Kost J, Mitragotri S, Gabbay R A et al. Transdermal monitoring of glucose and other analytes using ultrasound[J]. Nature Medicine, 6, 347-350(2000).

    [11] Mitragotri S, Coleman M, Kost J et al. Analysis of ultrasonically extracted interstitial fluid as a predictor of blood glucose levels[J]. Journal of Applied Physiology, 89, 961-966(2000).

    [12] Mitragotri S, Coleman M, Kost J et al. Transdermal extraction of analytes using low-frequency ultrasound[J]. Pharmaceutical Research, 17, 466-470(2000).

    [13] Curdy C, Kalia Y N, Guy R H. Non-invasive assessment of the effects of iontophoresis on human skin in-vivo[J]. The Journal of Pharmacy and Pharmacology, 53, 769-777(2001).

    [14] Li G L, van der Geest R, Chanet L et al. In vitro iontophoresis of R-apomorphine across human stratum corneum: structure-transport relationship of penetration enhancement[J]. Journal of Controlled Release, 84, 49-57(2002).

    [15] Prausnitz M R. A practical assessment of transdermal drug delivery by skin electroporation[J]. Advanced Drug Delivery Reviews, 35, 61-76(1999).

    [16] Lombry C, Dujardin N, Préat V. Transdermal delivery of macromolecules using skin electroporation[J]. Pharmaceutical Research, 17, 32-37(2000).

    [17] Mori K J, Hasegawa T, Sato S et al. Effect of electric field on the enhanced skin permeation of drugs by electroporation[J]. Journal of Controlled Release, 90, 171-179(2003).

    [18] Vanbever R, Préat V. In vivo efficacy and safety of skin electroporation[J]. Advanced Drug Delivery Reviews, 35, 77-88(1999).

    [19] Lee S, Kollias N, McAuliffe D J et al. Topical drug delivery in humans with a single photomechanical wave[J]. Pharmaceutical Research, 16, 1717-1721(1999).

    [20] Lee S, McAuliffe D J, Kollias N et al. Permeabilization and recovery of the stratum corneum in vivo: the synergy of photomechanical waves and sodium lauryl sulfate[J]. Lasers in Surgery and Medicine, 29, 145-150(2001).

    [21] McAllister D V, Allen M G, Prausnitz M R. Microfabricated microneedles for gene and drug delivery[J]. Annual Review of Biomedical Engineering, 2, 289-313(2000).

    [22] Henry S, McAllister D V, Allen M G et al. Microfabricated microneedles: a novel approach to transdermal drug delivery[J]. Journal of Pharmaceutical Sciences, 87, 922-925(1998).

    [23] Ahad A, Aqil M, Kohli K et al. Transdermal drug delivery: the inherent challenges and technological advancements[J]. Asian Journal of Pharmaceutical Sciences, 5, 276-288(2010).

    [24] Wu J R, Chappelow J, Yang J et al. Defects generated in human stratum corneum specimens by ultrasound[J]. Ultrasound in Medicine & Biology, 24, 705-710(1998).

    [25] Mitragotri S, Edwards D A, Blankschtein D et al. A mechanistic study of ultrasonically-enhanced transdermal drug delivery[J]. Journal of Pharmaceutical Sciences, 84, 697-706(1995).

    [26] Polat B E, Hart D, Langer R et al. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends[J]. Journal of Controlled Release, 152, 330-348(2011).

    [27] Ghosn M G, Sudheendran N, Wendt M et al. Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography[J]. Journal of Biophotonics, 3, 25-33(2010).

    [28] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [29] Yu T T, Zhu D. Review of tissue optical clearing methods for imaging whole organs[J]. Chinese Journal of Lasers, 47, 0207007(2020).

    [30] Xu X Q, Wu L. Dependence of optical clearing effect on tissue structure[J]. Chinese Journal of Lasers, 33, 998-1002(2006).

    [31] Zhong H Q, Guo Z Y, Wei H J et al. Effects of ultrasound and glycerol on skin optical clearing[J]. Chinese Journal of Lasers, 36, 2503-2509(2009).

    [32] Tuchin V V. Optical clearing of tissues and blood using the immersion method[J]. Journal of Physics D: Applied Physics, 38, 2497-2518(2005).

    [33] Jiang J Y, Boese M, Turner P H et al. Penetration kinetics of dimethyl sulphoxide and glycerol in dynamic optical clearing of porcine skin tissue in vitro studied by Fourier transform infrared spectroscopic imaging[J]. Journal of Biomedical Optics, 13, 021105(2008).

    [34] Kuranov R V, Sapozhnikova V V, Prough D S et al. In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography[J]. Physics in Medicine and Biology, 51, 3885-3900(2006).

    [35] Larina I V, Carbajal E F, Tuchin V V et al. Enhanced OCT imaging of embryonic tissue with optical clearing[J]. Laser Physics Letters, 5, 476-479(2008).

    [36] Wei H J, Wu G Y, Guo Z Y et al. Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography[J]. Journal of Biomedical Optics, 17, 116006(2012).

    [37] Xu X Q, Zhu Q H. Feasibility of sonophoretic delivery for effective skin optical clearing[J]. IEEE Transactions on Biomedical Engineering, 55, 1432-1437(2008).

    [38] Xu X Q, Zhu Q H. Sonophoretic delivery for contrast and depth improvement in skin optical coherence tomography[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 56-61(2008).

    [39] Khan M H, Choi B, Chess S et al. Optical clearing of in vivo human skin: implications for light-based diagnostic imaging and therapeutics[J]. Lasers in Surgery and Medicine, 34, 83-85(2004).

    [40] Whiteside P J D, Qian C X, Golda N et al. Ultrasonic modulation of tissue optical properties in ex vivo porcine skin to improve transmitted transdermal laser intensity[J]. Lasers in Surgery and Medicine, 49, 666-674(2017).

    [41] Park D, Song G, Jo Y et al. Sonophoresis using ultrasound contrast agents: dependence on concentration[J]. PLoS One, 11, e0157707(2016).

    [42] Zhong H, Guo Z, Wei H et al. Synergistic effect of ultrasound and thiazone-PEG 400 on human skin optical clearing in vivo[J]. Photochemistry and Photobiology, 86, 732-737(2010).

    [43] Genina E A, Svenskaya Y I, Yanina I Y et al. In vivo optical monitoring of transcutaneous delivery of calcium carbonate microcontainers[J]. Biomedical Optics Express, 7, 2082-2087(2016).

    [44] Xu X Q, Sun C J. Ultrasound enhanced skin optical clearing: microstructural changes[J]. Journal of Innovative Optical Health Sciences, 3, 189-194(2010).

    [45] Guo X, Guo Z Y, Wei H J et al. In vivo comparison of the optical clearing efficacy of optical clearing agents in human skin by quantifying permeability using optical coherence tomography[J]. Photochemistry and Photobiology, 87, 734-740(2011).

    [46] Zhang Y Q, Wei H J, Yang H Q et al. Noninvasive blood glucose monitoring during oral intake of different sugars with optical coherence tomography in human subjects[J]. Journal of Biophotonics, 6, 699-707(2013).

    [47] He R Y, Wei H J, Gu H M et al. Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomography: a pilot study[J]. Journal of Biomedical Optics, 17, 101513(2012).

    [48] Zhong H Q, Guo Z Y, Wei H J et al. Enhancement of permeability of glycerol with ultrasoundin human normal and cancer breast tissues in vitro using optical coherence tomography[J]. Laser Physics Letters, 7, 388-395(2010).

    [49] Zhao Q L, Si J L, Guo Z Y et al. Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography[J]. Laser Physics Letters, 8, 71-77(2011).

    [50] Stumpp O, Chen B, Welch A J. Using sandpaper for noninvasive transepidermal optical skin clearing agent delivery[J]. Journal of Biomedical Optics, 11, 041118(2006).

    [51] Zhong H Q, Guo Z Y, Wei H J et al. In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography[J]. Journal of Biomedical Optics, 15, 036012(2010).

    [52] Zhang Y Q, Wei H J, Yang H Q et al. In vitro study of the effects of ultrasound-mediated glycerol on optical attenuation of human normal and cancerous esophageal tissues with optical coherence tomography[J]. Laser Physics, 23, 065604(2013).

    [53] Zhu Z, Wu G, Wei H et al. Investigation of the permeability and optical clearing ability of different analytes in human normal and cancerous breast tissues by spectral domain OCT[J]. Journal of Biophotonics, 5, 536-543(2012).

    [54] Park D, Yoon J, Park J et al. Transdermal drug delivery aided by an ultrasound contrast agent: an in vitro experimental study[J]. The Open Biomedical Engineering Journal, 4, 56-62(2010).

    [55] Escobar-Chávez J J, Bonilla-Martínez D, Villegas-González M A et al. The use of sonophoresis in the administration of drugs throughout the skin[J]. Journal of Pharmacy & Pharmaceutical Sciences, 12, 88-115(2009).

    [56] Yoon J, Park D, Son T et al. A physical method to enhance transdermal delivery of a tissue optical clearing agent: combination of microneedling and sonophoresis[J]. Lasers in Surgery and Medicine, 42, 412-417(2010).

    [57] Buranachai C, Thavarungkul P, Kanatharana P et al. Application of wavelet analysis in optical coherence tomography for obscured pattern recognition[J]. Laser Physics Letters, 6, 892-895(2009).

    Yue Zou, Huajiang Wei, Hongqin Yang, Shusen Xie, Guoyong Wu. Effect of Pulsed Ultrasonic Intensities on Glycerol Permeability and Light Penetration Depth in Human Skin in vivo[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1017001
    Download Citation