• Journal of Semiconductors
  • Vol. 43, Issue 11, 112201 (2022)
Yiling Nie1, Pengshan Xie2, Xu Chen1, Chenxing Jin1, Wanrong Liu1, Xiaofang Shi1, Yunchao Xu1, Yongyi Peng1, Johnny C. Ho2、3、4、*, Jia Sun1、**, and Junliang Yang1、***
Author Affiliations
  • 1Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
  • 2Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
  • 3State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
  • 4Key Laboratory of Advanced Materials Processing & Mold (Zhengzhou University), Ministry of Education, Zhengzhou 450002, China
  • show less
    DOI: 10.1088/1674-4926/43/11/112201 Cite this Article
    Yiling Nie, Pengshan Xie, Xu Chen, Chenxing Jin, Wanrong Liu, Xiaofang Shi, Yunchao Xu, Yongyi Peng, Johnny C. Ho, Jia Sun, Junliang Yang. Hybrid C8-BTBT/InGaAs nanowire heterojunction for artificial photosynaptic transistors[J]. Journal of Semiconductors, 2022, 43(11): 112201 Copy Citation Text show less
    References

    [1] T Ahmed, M Tahir, M X Low et al. Fully Light-controlled memory and neuromorphic computation in layered black phosphorus. Adv Mater, 33, 2004207(2021).

    [2] Y X Hou, Y Li, Z C Zhang et al. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano, 15, 1497(2021).

    [3] M Lee, M Kim, J W Jo et al. Suppression of persistent photo-conductance in solution-processed amorphous oxide thin-film transistors. Appl Phys Lett, 112, 052103(2018).

    [4] M Lee, W Lee, S Choi et al. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv Mater, 29, 1700951(2017).

    [5] Z Lv, M Chen, F Qian et al. Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv Funct Mater, 29, 1902374(2019).

    [6] H Wang, Q Zhao, Z Ni et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv Mater, 30, 1803961(2018).

    [7] X Wang, Y Lu, J Zhang et al. Highly sensitive artificial visual array using transistors based on porphyrins and semiconductors. Small, 17, 2005491(2021).

    [8] D Xie, L Wei, M Xie et al. Photoelectric visual adaptation based on 0D-CsPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor. Adv Funct Mater, 31, 2010655(2021).

    [9] L Q Zhu, C J Wan, L Q Guo et al. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat Commun, 5, 1(2014).

    [10] L F Abbott, r W G Regehr. Synaptic computation. Nature, 431, 796(2004).

    [11] S H Sung, T J Kim, H Shin et al. Memory-centric neuromorphic computing for unstructured data processing. Nano Res, 14, 3126(2021).

    [12] C Qian, L A Kong, J Yang et al. Multi-gate organic neuron transistors for spatiotemporal information processing. Appl Phys Lett, 110, 083302(2017).

    [13] C J Wan, L Q Zhu, Y H Liu et al. Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems. Adv Mater, 28, 3557(2016).

    [14] C Han, X Han, J Han et al. Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application. Adv Funct Mater, 32, 2113053(2022).

    [15] C Qian, Y Choi, Y J Choi et al. Oxygen-detecting synaptic device for realization of artificial autonomic nervous system for maintaining oxygen homeostasis. Adv Mater, 32, 2002653(2020).

    [16] Y Jang, J Park, J Kang et al. Amorphous InGaZnO (a-IGZO) synaptic transistor for neuromorphic computing. ACS Appl Electron Mater, 4, 1427(2022).

    [17] X Yan, J H Qian, V K Sangwan et al. Progress and challenges for memtransistors in neuromorphic circuits and systems. Adv Mater, 2108025(2022).

    [18] W Huh, D Lee, C H Lee. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv Mater, 32, 2002092(2020).

    [19] J Shi, S D Ha, Y Zhou et al. A correlated nickelate synaptic transistor. Nat Commun, 4, 1(2013).

    [20] M Suri, O Bichler, D Querlioz et al. Physical aspects of low power synapses based on phase change memory devices. J Appl Phys, 112, 054904(2012).

    [21] H Shim, S Jang, J G Jang et al. Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin. Nano Res, 15, 758(2022).

    [22] E Kuramochi, K Nozaki, A Shinya et al. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nat Photonics, 8, 474(2014).

    [23] Z Luo, Y Xie, Z Li et al. Plasmonically engineered light-matter interactions in Au-nanoparticle/MoS2 heterostructures for artificial optoelectronic synapse. Nano Res, 15, 3539(2022).

    [24] L Qian, Y Sun, M Wu et al. A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale, 10, 6837(2018).

    [25] Y Sun, L Qian, D Xie et al. Photoelectric synaptic plasticity realized by 2D perovskite. Adv Funct Mater, 29, 1902538(2019).

    [26] S Wang, C Chen, Z Yu et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv Mater, 31, 1806227(2019).

    [27] S Qin, F Wang, Y Liu et al. A light-stimulated synaptic device based on graphene hybrid phototransistor. 2D Mater, 4, 035022(2017).

    [28] Y Wang, J Yang, Z Wang et al. Near-infrared annihilation of conductive filaments in quasiplane MoSe2/Bi2Se3 nanosheets for mimicking heterosynaptic plasticity. Small, 15, 1805431(2019).

    [29] B Yang, Y Lu, D Jiang et al. Bioinspired multifunctional organic transistors based on natural chlorophyll/organic semiconductors. Adv Mater, 32, 2001227(2020).

    [30] J J Hou, F Wang, N Han et al. Stoichiometric effect on electrical, optical, and structural properties of composition-tunable InxGa1–xAs nanowires. ACS Nano, 6, 9320(2012).

    [31] Y Huang, J Sun, J Zhang et al. Controllable thin-film morphology and structure for 2,7-dioctyl[1]benzothieno[3,2-b][1] benzothiophene (C8-BTBT) based organic field-effect transistors. Org Electron, 36, 73(2016).

    [32] P Xie, T Liu, J Sun et al. Solution-processed ultra-flexible C8-BTBT organic thin-film transistors with the corrected mobility over 18 cm2/(V·s). Sci Bull, 65, 791(2020).

    [33] S Tong, J Sun, C Wang et al. High-performance broadband perovskite photodetectors based on CH3NH3PbI3/C8-BTBT heterojunction. Adv Electron Mater, 3, 1700058(2017).

    [34] Y Yuan, J Huang. Ultrahigh gain, low noise, ultraviolet photodetectors with highly aligned organic crystals. Adv Opt Mater, 4, 264(2016).

    [35] A Mukherjee, S Sagar, S Parveen et al. Superionic rubidium silver iodide gated low voltage synaptic transistor. Appl Phys Lett, 119, 253502(2021).

    [36] S Kim, B Choi, M Lim et al. Pattern recognition using carbon nanotube synaptic transistors with an adjustable weight update protocol. ACS Nano, 11, 2814(2017).

    [37] S Dai, X Wu, D Liu et al. Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl Mater Interfaces, 10, 21472(2018).

    [38] J Han, J Wang, M Yang et al. Graphene/organic semiconductor heterojunction phototransistors with broadband and bi-directional photoresponse. Adv Mater, 30, 1804020(2018).

    [39] H Xia, S Tong, C Zhang et al. Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8-BTBT bulk heterojunction. Appl Phys Lett, 112, 233301(2018).

    [40] D Yang, X Zhang, K Wang et al. Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers. Nano Lett, 19, 3313(2019).

    [41] L Xu, H Xiong, Z Fu et al. High conductance margin for efficient neuromorphic computing enabled by stacking nonvolatile van der waals transistors. Phys Rev Appl, 16, 044049(2021).

    [42] F Yu, L Q Zhu, H Xiao et al. Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and pavlovian associative learning activities. Adv Funct Mater, 28, 1804025(2018).

    [43] Y B Guo, L Q Zhu, T Y Long et al. Bio-polysaccharide electrolyte gated photoelectric synergic coupled oxide neuromorphic transistor with Pavlovian activities. J Mater Chem C, 8, 2780(2020).

    [44] C Qian, S Oh, Y Choi et al. Solar-stimulated optoelectronic synapse based on organic heterojunction with linearly potentiated synaptic weight for neuromorphic computing. Nano Energy, 66, 104095(2019).

    [45] S Kim, K Heo, S Lee et al. Ferroelectric polymer-based artificial synapse for neuromorphic computing. Nanoscale Horiz, 6, 139(2021).

    [46] E Li, X Wu, Q Chen et al. Nanoscale channel organic ferroelectric synaptic transistor array for high recognition accuracy neuromorphic computing. Nano Energy, 85, 106010(2021).

    [47] M Prezioso, F Merrikh-Bayat, B Hoskins et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 521, 61(2015).

    Yiling Nie, Pengshan Xie, Xu Chen, Chenxing Jin, Wanrong Liu, Xiaofang Shi, Yunchao Xu, Yongyi Peng, Johnny C. Ho, Jia Sun, Junliang Yang. Hybrid C8-BTBT/InGaAs nanowire heterojunction for artificial photosynaptic transistors[J]. Journal of Semiconductors, 2022, 43(11): 112201
    Download Citation