• Photonics Research
  • Vol. 9, Issue 10, 2016 (2021)
Mikko Partanen1、2、*, Hyeonwoo Lee1, and Kyunghwan Oh1、3
Author Affiliations
  • 1Photonic Device Physics Laboratory, Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
  • 2Photonics Group, Department of Electronics and Nanoengineering, Aalto University, 00076 Aalto, Finland
  • 3e-mail: koh@yonsei.ac.kr
  • show less
    DOI: 10.1364/PRJ.433995 Cite this Article Set citation alerts
    Mikko Partanen, Hyeonwoo Lee, Kyunghwan Oh. Quantitative in situ measurement of optical force along a strand of cleaved silica optical fiber induced by the light guided therewithin[J]. Photonics Research, 2021, 9(10): 2016 Copy Citation Text show less
    References

    [1] S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger. Self-cooling of a micromirror by radiation pressure. Nature, 444, 67-70(2006).

    [2] D. Kleckner, D. Bouwmeester. Sub-kelvin optical cooling of a micromechanical resonator. Nature, 444, 75-78(2006).

    [3] D. M. Weld, A. Kapitulnik. Feedback control and characterization of a microcantilever using optical radiation pressure. Appl. Phys. Lett., 89, 164102(2006).

    [4] D. Ma, J. L. Garrett, J. N. Munday. Quantitative measurement of radiation pressure on a microcantilever in ambient environment. Appl. Phys. Lett., 106, 091107(2015).

    [5] D. R. Evans, P. Tayati, H. An, P. K. Lam, V. S. J. Craig, T. J. Senden. Laser actuation of cantilevers for picometre amplitude dynamic force microscopy. Sci. Rep., 4, 5567(2014).

    [6] R. Wagner, F. Guzman, A. Chijioke, G. K. Gulati, M. Keller, G. Shaw. Direct measurement of radiation pressure and circulating power inside a passive optical cavity. Opt. Express, 26, 23492-23506(2018).

    [7] P. R. Wilkinson, G. A. Shaw, J. R. Pratt. Determination of a cantilever’s mechanical impedance using photon momentum. Appl. Phys. Lett., 102, 184103(2013).

    [8] N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, S. E. Bialkowski. Unravelling the effects of radiation forces in water. Nat. Commun., 5, 4363(2014).

    [9] A. Ashkin, J. M. Dziedzic. Radiation pressure on a free liquid surface. Phys. Rev. Lett., 30, 139-142(1973).

    [10] A. Casner, J.-P. Delville. Giant deformations of a liquid–liquid interface induced by the optical radiation pressure. Phys. Rev. Lett., 87, 054503(2001).

    [11] H. Choi, M. Park, D. S. Elliott, K. Oh. Optomechanical measurement of the Abraham force in an adiabatic liquid-core optical-fiber waveguide. Phys. Rev. A, 95, 053817(2017).

    [12] F. A. Schaberle, L. A. Reis, C. Serpa, L. G. Arnaut. Photon momentum transfer at water/air interfaces under total internal reflection. New J. Phys., 21, 033013(2019).

    [13] L. Zhang, W. She, N. Peng, U. Leonhardt. Experimental evidence for Abraham pressure of light. New J. Phys., 17, 053035(2015).

    [14] R. V. Jones, J. C. S. Richards. The pressure of radiation in a refracting medium. Proc. R. Soc. London A, 221, 480-498(1954).

    [15] R. V. Jones, B. Leslie. The measurement of optical radiation pressure in dispersive media. Proc. R. Soc. London A, 360, 347-363(1978).

    [16] A. Kundu, R. Rani, K. S. Hazra. Graphene oxide demonstrates experimental confirmation of Abraham pressure on solid surface. Sci. Rep., 7, 42538(2017).

    [17] A. F. Gibson, M. F. Kimmitt, A. C. Walker. Photon drag in germanium. Appl. Phys. Lett., 17, 75-77(1970).

    [18] W. She, J. Yu, R. Feng. Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light. Phys. Rev. Lett., 101, 243601(2008).

    [19] I. Brevik. Analysis of recent interpretations of the Abraham–Minkowski problem. Phys. Rev. A, 98, 043847(2018).

    [20] M. Partanen, J. Tulkki. Comment on ‘Analysis of recent interpretations of the Abraham–Minkowski problem,’. Phys. Rev. A, 100, 017801(2019).

    [21] I. Brevik. Reply to ‘Comment on “Analysis of recent interpretations of the Abraham–Minkowski problem,”’. Phys. Rev. A, 100, 017802(2019).

    [22] I. Brevik. Comment on ‘Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light,’. Phys. Rev. Lett., 103, 219301(2009).

    [23] M. Mansuripur. Comment on ‘Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light’. Phys. Rev. Lett., 103, 019301(2009).

    [24] A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, T. J. Kippenberg. High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators. New J. Phys., 10, 095015(2008).

    [25] I. Brevik, S. A. Ellingsen. Possibility of measuring the Abraham force using whispering gallery modes. Phys. Rev. A, 81, 063830(2010).

    [26] H. H. Diamandi, Y. London, A. Zadok. Opto-mechanical inter-core cross-talk in multi-core fibers. Optica, 4, 289-297(2017).

    [27] K. Oh, U.-C. Paek. Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards(2012).

    [28] M. Partanen, H. Lee, K. Oh. Radiation pressure measurement using a macroscopic oscillator in an ambient environment. Sci. Rep., 10, 20419(2020).

    [29] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [30] W. T. Thomson, M. Dahleh. Theory of Vibration with Applications(1998).

    [31] I. H. Malitson. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am., 55, 1205-1209(1965).

    [32] D. Ma, J. N. Munday. Measurement of wavelength-dependent radiation pressure from photon reflection and absorption due to thin film interference. Sci. Rep., 8, 15930(2018).

    [33] M. Abraham. Zur Elektrodynamik bewegter Körper. Rend. Circ. Mat. Palermo, 28, 1(1909).

    [34] M. Abraham. Sull’elettrodinamica di Minkowski. Rend. Circ. Mat. Palermo, 30, 33-46(1910).

    [35] H. Minkowski. Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 53(1908).

    [36] U. Leonhardt. Momentum in an uncertain light. Nature, 444, 823-824(2006).

    [37] R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop. Colloquium: momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys., 79, 1197-1216(2007).

    [38] S. M. Barnett. Resolution of the Abraham–Minkowski dilemma. Phys. Rev. Lett., 104, 070401(2010).

    [39] S. M. Barnett, R. Loudon. “The enigma of optical momentum in a medium. Philos. Trans. R. Soc. A, 368, 927-939(2010).

    [40] M. Partanen, T. Häyrynen, J. Oksanen, J. Tulkki. Photon mass drag and the momentum of light in a medium. Phys. Rev. A, 95, 063850(2017).

    [41] K. Y. Bliokh, A. Y. Bekshaev, F. Nori. Optical momentum, spin, and angular momentum in dispersive media. Phys. Rev. Lett., 119, 073901(2017).

    [42] K. Y. Bliokh, A. Y. Bekshaev, F. Nori. Optical momentum and angular momentum in complex media: from the Abraham–Minkowski debate to unusual properties of surface plasmon-polaritons. New J. Phys., 19, 123014(2017).

    [43] M. Partanen, J. Tulkki. Mass-polariton theory of light in dispersive media. Phys. Rev. A, 96, 063834(2017).

    [44] B. A. Kemp. Resolution of the Abraham–Minkowski debate: implications for the electromagnetic wave theory of light in matter. J. Appl. Phys., 109, 111101(2011).

    [45] M. Partanen, J. Tulkki. Lorentz covariance of the mass-polariton theory of light. Phys. Rev. A, 99, 033852(2019).

    [46] M. Partanen, J. Tulkki. Lagrangian dynamics of the coupled field-medium state of light. New J. Phys., 21, 073062(2019).

    [47] U. Leonhardt. Abraham and Minkowski momenta in the optically induced motion of fluids. Phys. Rev. A, 90, 033801(2014).

    [48] P. W. Milonni, R. W. Boyd. Momentum of light in a dielectric medium. Adv. Opt. Photon., 2, 519-553(2010).

    [49] I. Brevik. Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor. Phys. Rep., 52, 133-201(1979).

    [50] M. Partanen, J. Tulkki. Light-driven mass density wave dynamics in optical fibers. Opt. Express, 26, 22046-22063(2018).

    [51] R. Brückner. Properties and structure of vitreous silica. I. J. Non-Cryst. Solids, 5, 123-175(1970).

    [52] B. H. W. S. De Jong, R. G. C. Beerkens, P. A. van Nijnatten. Glass. Ullmann’s Encyclopedia of Industrial Chemistry(2000).

    Mikko Partanen, Hyeonwoo Lee, Kyunghwan Oh. Quantitative in situ measurement of optical force along a strand of cleaved silica optical fiber induced by the light guided therewithin[J]. Photonics Research, 2021, 9(10): 2016
    Download Citation