• Laser & Optoelectronics Progress
  • Vol. 61, Issue 19, 1913009 (2024)
Bigeng Chen1,*, Ke Li2, Yiru Zhao3, and Shaoliang Yu1
Author Affiliations
  • 1Zhejiang Laboratory, Hangzhou 311121, Zhejiang , China
  • 2Pengcheng Laboratory, Shenzhen 518000, Guangdong , China
  • 3School of Electronic Engineering, Chaohu University, Hefei 238024, Anhui , China
  • show less
    DOI: 10.3788/LOP241594 Cite this Article Set citation alerts
    Bigeng Chen, Ke Li, Yiru Zhao, Shaoliang Yu. Research Progress on Silicon Electro-Optical Modulator (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(19): 1913009 Copy Citation Text show less
    References

    [1] Agrawal G P[M]. Fiber-optic communication systems(2021).

    [2] Chen F S. Modulators for optical communications[J]. Proceedings of the IEEE, 58, 1440-1457(1970).

    [3] Kaminow I P, Carruthers J R, Turner E H et al. Thin-film LiNbO3 electro-optic light modulator[J]. Applied Physics Letters, 22, 540-542(1973).

    [4] Xu Q F, Schmidt B, Pradhan S et al. Micrometre-scale silicon electro-optic modulator[J]. Nature, 435, 325-327(2005).

    [5] Huang Q, Zhang Y, Sun J Q et al. Research progress on Ge/SiGe multiple quantum well optical modulators[J]. Laser & Optoelectronics Progress, 59, 1900003(2022).

    [6] Chaisakul P, Vakarin V, Frigerio J et al. Recent progress on Ge/SiGe quantum well optical modulators, detectors, and emitters for optical interconnects[J]. Photonics, 6, 24(2019).

    [7] Company M E. AI driving data center construction[EB/OL]. https://www.mecojax.com/the-rise-of-ai-a-driving-force-behind-data-center-expansion/

    [8] Xie C J, Zhang B. Scaling optical interconnects for hyperscale data center networks[J]. Proceedings of the IEEE, 110, 1699-1713(2022).

    [9] Treyz G V, May P G, Halbout J M. Silicon Mach‒Zehnder waveguide interferometers based on the plasma dispersion effect[J]. Applied Physics Letters, 59, 771-773(1991).

    [10] Treyz G V, May P G, Halbout J M. Silicon optical modulators at 1.3- μm based on free-carrier absorption[J]. IEEE Electron Device Letters, 12, 276-278(1991).

    [11] Barrier M. Silicon photonics: from transceivers to speed-of-light AI[EB/OL]. https://www.yolegroup.com/strategy-insights/silicon-photonics-from-transceivers-to-speed-of-light-ai/

    [12] Marpaung D, Yao J P, Capmany J. Integrated microwave photonics[J]. Nature Photonics, 13, 80-90(2019).

    [13] Cheng Z, Shu X Q, Ma L M et al. On-chip silicon electro-optical modulator with ultra-high extinction ratio for fiber-optic distributed acoustic sensing[J]. Nature Communications, 14, 7409(2023).

    [14] Jin Z C, Chen J G, Chang Y M et al. Silicon photonic integrated interrogator for fiber-optic distributed acoustic sensing[J]. Photonics Research, 12, 465-473(2024).

    [15] Soref R, Bennett B. Electrooptical effects in silicon[J]. IEEE Journal of Quantum Electronics, 23, 123-129(1987).

    [16] Soref R A, Bennett B R. Kramers-Kronig analysis of electro-optical switching in silicon[J]. Proceedings of SPIE, 704, 32-37(1987).

    [17] Qasymeh M, Cada M, Ponomarenko S A. Quadratic electro-optic Kerr effect: applications to photonic devices[J]. IEEE Journal of Quantum Electronics, 44, 740-746(2008).

    [18] Timurdogan E, Poulton C V, Byrd M J et al. Electric field-induced second-order nonlinear optical effects in silicon waveguides[J]. Nature Photonics, 11, 200-206(2017).

    [19] Peltier J, Alpes U G, Zhang W W et al. High-speed silicon photonic electro-optic Kerr modulation[J]. Photonics Research, 12, 51-60(2023).

    [20] Hon N K, Soref R, Jalali B. The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared[J]. Journal of Applied Physics, 110, 011301(2011).

    [21] Chakraborty U, Carolan J, Clark G et al. Cryogenic operation of silicon photonic modulators based on the DC Kerr effect[J]. Optica, 7, 1385-1390(2020).

    [22] Gardes F Y, Brimont A, Sanchis P et al. High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode[J]. Optics Express, 17, 21986-21991(2009).

    [23] Liu A S, Jones R, Liao L et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J]. Nature, 427, 615-618(2004).

    [24] Xu Q F, Lipson M. Carrier-induced optical bistability in silicon ring resonators[J]. Optics Letters, 31, 341-343(2006).

    [25] Wright N M, Thomson D J, Litvinenko K L et al. Free carrier lifetime modification for silicon waveguide based devices[C], 122-124(2008).

    [26] Xu Q F, Manipatruni S, Schmidt B et al. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators[J]. Optics Express, 15, 430-436(2007).

    [27] Cocorullo G, Della Corte F G, Rendina I. Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm[J]. Applied Physics Letters, 74, 3338-3340(1999).

    [28] Kitai A[M]. Principles of solar cells, leds and diodes: the role of the PN junction(2011).

    [29] Sproul A B, Green M A. Intrinsic carrier concentration and minority-carrier mobility of silicon from 77 to 300 K[J]. Journal of Applied Physics, 73, 1214-1225(1993).

    [30] Zhang W W, Debnath K, Chen B G et al. High bandwidth capacitance efficient silicon MOS modulator[J]. Journal of Lightwave Technology, 39, 201-207(2021).

    [31] Debnath K, Thomson D J, Zhang W W et al. All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor[J]. Photonics Research, 6, 373-379(2018).

    [32] Bottenfield C G, Thomas V A, Ralph S E. Silicon photonic modulator linearity and optimization for microwave photonic links[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 3400110(2019).

    [33] Peters C J. Gigacycle-bandwidth coherent-light traveling-wave amplitude modulator[J]. Proceedings of the IEEE, 53, 455-460(1965).

    [34] Liu A S, Liao L, Rubin D et al. High-speed optical modulation based on carrier depletion in a silicon waveguide[J]. Optics Express, 15, 660-668(2007).

    [35] Bogaerts W, de Heyn P, van Vaerenbergh T et al. Silicon microring resonators[J]. Laser & Photonics Reviews, 6, 47-73(2012).

    [36] Xu Q F, Lipson M. All-optical logic based on silicon micro-ring resonators[J]. Optics Express, 15, 924-929(2007).

    [37] Wu X R, Huang C R, Xu K et al. 128-Gb/s line rate OFDM signal modulation using an integrated silicon microring modulator[J]. IEEE Photonics Technology Letters, 28, 2058-2061(2016).

    [38] Sharma J, Li H, Xuan Z et al. Silicon photonic micro-ring modulator-based 4×112 Gb/s O-band WDM transmitter with ring photocurrent-based thermal control in 28 nm CMOS[C](2021).

    [39] Zhang W W, Ebert M, Li K et al. Harnessing plasma absorption in silicon MOS ring modulators[J]. Nature Photonics, 17, 273-279(2023).

    [40] Han C H, Zheng Z, Shu H W et al. Slow-light silicon modulator with 110-GHz bandwidth[J]. Science Advances, 9, eadi5339(2023).

    [41] Li K, Thomson D J, Liu S H et al. An integrated CMOS-silicon photonics transmitter with a 112 gigabaud transmission and picojoule per bit energy efficiency[J]. Nature Electronics, 6, 910-921(2023).

    [42] Sun C, Wade M T, Lee Y et al. Single-chip microprocessor that communicates directly using light[J]. Nature, 528, 534-538(2015).

    [43] Li A, Ma Q L, Xie Y J et al. A 256 Gb/s electronic-photonic monolithically integrated transceiver in 45 nm CMOS[J]. Journal of Semiconductors, 45, 070501(2024).

    [44] Omirzakhov K, Pirmoradi A, Hao H et al. Monolithic optical PAM-4 transmitter with autonomous carrier tracking[J]. Optics Express, 32, 2894-2905(2024).

    [45] Liu Z X, Zeng C, Xia J S. Research progress on high-linearity electro-optical modulators[J]. Chinese Journal of Lasers, 49, 1206001(2022).

    [46] Xie X B, Khurgin J, Kang J et al. Linearized Mach-Zehnder intensity modulator[J]. IEEE Photonics Technology Letters, 15, 531-533(2003).

    [47] Shawon M J, Saxena V. Optical linearization of silicon photonic ring-assisted Mach-Zehnder modulator[J]. Journal of Lightwave Technology, 42, 2868-2879(2024).

    [48] Xia P H, Yu H, Zhang Q et al. High linearity silicon DC Kerr modulator enhanced by slow light for 112 Gbit/s PAM4 over 2 km single mode fiber transmission[J]. Optics Express, 30, 16996-17007(2022).

    [49] Yue H S, Chen K Z, Chu T. Ultrahigh-linearity dual-drive scheme using a single silicon modulator[J]. Optics Letters, 48, 2995-2998(2023).

    [50] Zhang Q, Yu H, Xia P H et al. High linearity silicon modulator capable of actively compensating input distortion[J]. Optics Letters, 45, 3785-3788(2020).

    [51] Ren M Q, Zhou D P, Chen L et al. Influence of finite extinction ratio on performance of phase-sensitive optical time-domain reflectometry[J]. Optics Express, 24, 13325-13333(2016).

    [52] Fan C Z, Li H, Zhang K Q et al. 300 km ultralong fiber optic DAS system based on optimally designed bidirectional EDFA relays[J]. Photonics Research, 11, 968-977(2023).

    [53] Lin H Z, Liu W T, Sun S et al. Influence of pulse characteristics on ghost imaging lidar system[J]. Applied Optics, 60, 1623-1628(2021).

    [54] Wang Z N, Zhang L, Wang S et al. Coherent Φ- OTDR based on I/Q demodulation and homodyne detection[J]. Optics Express, 24, 853-858(2016).

    [55] Liu J C, Du J B, Shen W H et al. Ultrahigh extinction ratio silicon micro-ring modulator by MDM resonance for high speed PAM-4 and PAM-8 signaling[J]. Optics Express, 30, 25672-25684(2022).

    [56] Liu S, Cai H, DeRose C T et al. High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB[J]. Optics Express, 25, 11254-11264(2017).

    [57] McDonald J, Li B L, Frey N et al. Great power, great responsibility: recommendations for reducing energy for training language models[C], 1962-1970(2022).

    [58] Chien A A, Lin L, Nguyen H et al. Reducing the carbon impact of generative AI inference (today and in 2035[C](2023).

    [59] Bennett B R, Soref R A, del Alamo J A. Carrier-induced change in refractive index of InP, GaAs and InGaAsP[J]. IEEE Journal of Quantum Electronics, 26, 113-122(1990).

    [61] Deng H J, Li S Y, Yang S M et al. Broadband linearization of microwave photonic link based on single-drive dual-parallel Mach-Zehnder modulator[J]. Laser & Optoelectronics Progress, 59, 1713002(2022).

    [62] Wang L H, Han Z, Zheng Y et al. Integrated ultra-wideband dynamic microwave frequency identification system in lithium niobate on insulator[J]. Laser & Photonics Reviews, 2400332(2024).

    [63] Zhao Y R, Wang C Q, Zhao Z P et al. A microwave photonics true-time-delay system using carrier compensation technique based on wavelength division multiplexing[J]. Photonics, 10, 34(2022).

    [64] Zhang Z Y, Yu H, Huang Q K et al. High-speed and low-power silicon optical phased array based on the carrier-depletion mechanism[J]. IEEE Photonics Technology Letters, 34, 271-274(2022).

    [65] Jiang Y, Zhang W J, Yang F et al. Photonic convolution neural network based on interleaved time-wavelength modulation[J]. Journal of Lightwave Technology, 39, 4592-4600(2021).

    [66] Ashtiani F, Geers A J, Aflatouni F. An on-chip photonic deep neural network for image classification[J]. Nature, 606, 501-506(2022).

    [67] Nedeljkovic M, Littlejohns C G, Khokhar A Z et al. Silicon-on-insulator free-carrier injection modulators for the mid-infrared[J]. Optics Letters, 44, 915-918(2019).

    [68] Shen W H, Zhou G Q, Du J B et al. High-speed silicon microring modulator at the 2  µm waveband with analysis and observation of optical bistability[J]. Photonics Research, 10, A35-A42(2022).

    Bigeng Chen, Ke Li, Yiru Zhao, Shaoliang Yu. Research Progress on Silicon Electro-Optical Modulator (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(19): 1913009
    Download Citation