• Photonics Research
  • Vol. 11, Issue 5, 682 (2023)
Zihan Tao1、†, Yuansheng Tao1、†, Ming Jin1, Jun Qin2, Ruixuan Chen1, Bitao Shen1, Yichen Wu1, Haowen Shu1、6、*, Shaohua Yu1、3, and Xingjun Wang1、3、4、5、7、*
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing 100871, China
  • 2Key Laboratory of Information and Communication Systems, Ministry of Information Industry, Beijing Information Science and Technology University, Beijing 100192, China
  • 3Peng Cheng Laboratory, Shenzhen 518055, China
  • 4Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
  • 5Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
  • 6e-mail: haowenshu@pku.edu.cn
  • 7e-mail: xjwang@pku.edu.cn
  • show less
    DOI: 10.1364/PRJ.476466 Cite this Article Set citation alerts
    Zihan Tao, Yuansheng Tao, Ming Jin, Jun Qin, Ruixuan Chen, Bitao Shen, Yichen Wu, Haowen Shu, Shaohua Yu, Xingjun Wang. Highly reconfigurable silicon integrated microwave photonic filter towards next-generation wireless communication[J]. Photonics Research, 2023, 11(5): 682 Copy Citation Text show less
    References

    [1] Y. I. A. Al-Yasir, N. Ojaroudi Parchin, R. A. Abd-Alhameed, A. M. Abdulkhaleq, J. M. Noras. Recent progress in the design of 4g/5g reconfigurable filters. Electronics, 8, 114(2019).

    [2] R. Levy, S. B. Cohn. A history of microwave filter research, design, and development. IEEE Trans. Microw. Theory Tech., 32, 1055-1067(1984).

    [3] J. Xu, K. Bi, X. Zhai, Y. Hao, K. D. Mcdonald-Maier. A dual-band microwave filter design for modern wireless communication systems. IEEE Access, 7, 98786-98791(2019).

    [4] C. Liu, J. Wang, L. Cheng, M. Zhu, G.-K. Chang. Key microwave-photonics technologies for next-generation cloud-based radio access networks. J. Lightwave Technol., 32, 3452-3460(2014).

    [5] W. Saad, M. Bennis, M. Chen. A vision of 6g wireless systems: Applications, trends, technologies, and open research problems. IEEE Netw., 34, 134-142(2019).

    [6] J. Wang, C. Jiang, H. Zhang, Y. Ren, K.-C. Chen, L. Hanzo. Thirty years of machine learning: the road to Pareto-optimal wireless networks. IEEE Commun. Surv. Tutorials, 22, 1472-1514(2020).

    [7] X. Li, F. Dong, S. Zhang, W. Guo. A survey on deep learning techniques in wireless signal recognition. Wireless Commun. Mobile Comput., 2019, 5629572(2019).

    [8] Y. Zhao, X. Luo, X. Lin, H. Wang, X. Kui, F. Zhou, J. Wang, Y. Chen, W. Chen. Visual analytics for electromagnetic situation awareness in radio monitoring and management. IEEE Trans. Vis. Comput. Graphics, 26, 590-600(2019).

    [9] A. Goldsmith. Wireless Communication(2005).

    [10] S. Haykin. Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun., 23, 201-220(2005).

    [11] Z. Wang, Y. Du, K. Wei, K. Han, X. Xu, G. Wei, W. Tong, P. Zhu, J. Ma, J. Wang, G. Wang. Vision, application scenarios, and key technology trends for 6G mobile communications. Sci. China Inf. Sci., 65, 151301(2022).

    [12] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [13] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 1, 319-330(2007).

    [14] E. J. Naglich, J. Lee, D. Peroulis, W. J. Chappell. A tunable bandpass-to-bandstop reconfigurable filter with independent bandwidths and tunable response shape. IEEE Trans. Microw. Theory Tech., 58, 3770-3779(2010).

    [15] I. F. Akyildiz, A. Kak, S. Nie. 6G and beyond: the future of wireless communications systems. IEEE Access, 8, 133995(2020).

    [16] M. Z. Chowdhury, M. Shahjalal, M. K. Hasan, Y. M. Jang. The role of optical wireless communication technologies in 5G/6G and IoT solutions: prospects, directions, and challenges. Appl. Sci., 9, 4367(2019).

    [17] Q. Long, Y. Chen, H. Zhang, X. Lei. Software defined 5G and 6G networks: a survey. Mobile Netw. Appl., 27, 1792-1812(2022).

    [18] A. Boutejdar, A. A. Ibrahim, W. A. E. Ali. Design of compact size and tunable band pass filter for WLAN applications. Electron. Lett., 52, 1996-1997(2016).

    [19] E. J. Naglich, A. C. Guyette, D. Peroulis. High-Q intrinsically-switched quasi-absorptive tunable bandstop filter with electrically-short resonators. IEEE MTT-S International Microwave Symposium (IMS), 1-4(2014).

    [20] S. Courreges, Y. Li, Z. Zhao, K. Choi, A. Hunt, S. Horst, J. D. Cressler, J. Papapolymerou. A Ka-band electronically tunable ferroelectric filter. IEEE Microw. Wireless Compon. Lett., 19, 356-358(2009).

    [21] Y. Liu, A. Choudhary, D. Marpaung, B. J. Eggleton. Integrated microwave photonic filters. Adv. Opt. Photon., 12, 485-555(2020).

    [22] S. Pan, Y. Zhang. Microwave photonic radars. J. Lightwave Technol., 38, 5450-5484(2020).

    [23] W. Zhang, J. Yao. Silicon-based integrated microwave photonics. IEEE J. Quantum Electron., 52, 0600412(2015).

    [24] D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany. Integrated microwave photonics. Laser Photon. Rev., 7, 506-538(2013).

    [25] S. X. Chew, X. Yi, S. Song, L. Li, P. Bian, L. Nguyen, R. A. Minasian. Silicon-on-insulator dual-ring notch filter for optical sideband suppression and spectral characterization. J. Lightwave Technol., 34, 4705-4714(2016).

    [26] S. Song, S. X. Chew, X. Yi, L. Nguyen, R. A. Minasian. Tunable single-passband microwave photonic filter based on integrated optical double notch filter. J. Lightwave Technol., 36, 4557-4564(2018).

    [27] W. Jiao, M. Cheng, K. Wang, J. Sun. Demonstration of photonic-assisted microwave frequency measurement using a notch filter on silicon chip. J. Lightwave Technol., 39, 6786-6795(2021).

    [28] M. Burla, X. Wang, M. Li, L. Chrostowski, J. Azaña. Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip. Nat. Commun., 7, 13004(2016).

    [29] X. Guo, T. Dai, B. Chen, H. Yu, Y. Wang, J. Yang. Twin-Fano resonator with widely tunable slope for ultra-high-resolution wavelength monitor. Opt. Lett., 44, 4527-4530(2019).

    [30] J. Xu, Y. Zhang, X. Guo, Q. Huang, X. Zhang, Y. Su. Ultra-narrow passband-tunable filter based on a high-q silicon racetrack resonator. Opt. Lett., 46, 5575-5578(2021).

    [31] L. Zhang, L. Jie, M. Zhang, Y. Wang, Y. Xie, Y. Shi, D. Dai. Ultrahigh-Q silicon racetrack resonators. Photon. Res., 8, 684-689(2020).

    [32] Z. Tao, B. Wang, B. Bai, R. Chen, H. Shu, X. Zhang, X. Wang. An ultra-compact polarization-insensitive slot-strip mode converter. Front. Optoelectron., 15, 1(2022).

    [33] D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J. Hartmann. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).

    [34] F. Kish, V. Lal, P. Evans, S. W. Corzine, M. Ziari, T. Butrie, M. Reffle, H.-S. Tsai, A. Dentai, J. Pleumeekers, M. Missey. System-on-chip photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 24, 6100120(2017).

    [35] D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, B. J. Eggleton. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica, 2, 76-83(2015).

    [36] B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, G. Bahl. Brillouin integrated photonics. Nat. Photonics, 13, 664-677(2019).

    [37] L. Zhang, S. Hong, Y. Wang, H. Yan, Y. Xie, T. Chen, M. Zhang, Z. Yu, Y. Shi, L. Liu, D. Dai. Ultralow-loss silicon photonics beyond the singlemode regime. Laser Photon. Rev., 16, 2100292(2022).

    [38] Y. Liu, A. Choudhary, G. Ren, K. Vu, B. Morrison, A. Casas-Bedoya, T. G. Nguyen, D.-Y. Choi, P. Ma, A. Mitchell, S. J. Madden, D. Marpaung, B. J. Eggleton. Integration of Brillouin and passive circuits for enhanced radio-frequency photonic filtering. APL Photon., 4, 106103(2019).

    [39] S. Gertler, N. T. Otterstrom, M. Gehl, A. L. Starbuck, C. M. Dallo, A. T. Pomerene, D. C. Trotter, A. L. Lentine, P. T. Rakich. Narrowband microwave-photonic notch filters using Brillouin-based signal transduction in silicon. Nat. Commun., 13, 1947(2022).

    [40] M. Garrett, Y. Liu, M. Merklein, D.-Y. Choi, K. Yan, S. J. Madden, B. J. Eggleton. Multi-band and frequency-agile chip-based RF photonic filter for ultra-deep interference rejection. J. Lightwave Technol., 40, 1672-1680(2022).

    [41] S. Gertler, E. A. Kittlaus, N. T. Otterstrom, P. T. Rakich. Tunable microwave-photonic filtering with high out-of-band rejection in silicon. APL Photon., 5, 096103(2020).

    [42] X. Liu, Y. Yu, H. Tang, L. Xu, J. Dong, X. Zhang. Silicon-on-insulator-based microwave photonic filter with narrowband and ultrahigh peak rejection. Opt. Lett., 43, 1359-1362(2018).

    [43] L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, A. J. Lowery. Programmable photonic signal processor chip for radiofrequency applications. Optica, 2, 854-859(2015).

    [44] V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, A. M. Weiner. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nat. Photonics, 6, 186-194(2012).

    [45] D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, J. Capmany. Multipurpose silicon photonics signal processor core. Nat. Commun., 8, 1(2017).

    [46] H. Shu, L. Chang, Y. Tao, B. Shen, W. Xie, M. Jin, A. Netherton, Z. Tao, X. Zhang, R. Chen, B. Bai, J. Qin, S. Yu, X. Wang, J. E. Bowers. Microcomb-driven silicon photonic systems. Nature, 605, 457-463(2022).

    [47] J. Hu, J. He, J. Liu, A. S. Raja, M. Karpov, A. Lukashchuk, T. J. Kippenberg, C.-S. Brès. Reconfigurable radiofrequency filters based on versatile soliton microcombs. Nat. Commun., 11, 1(2020).

    [48] E. Hamidi, D. E. Leaird, A. M. Weiner. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Trans. Microw. Theory Tech., 58, 3269-3278(2010).

    [49] Y. Tao, H. Shu, X. Wang, M. Jin, Z. Tao, F. Yang, J. Shi, J. Qin. Hybrid-integrated high-performance microwave photonic filter with switchable response. Photon. Res., 9, 1569-1580(2021).

    [50] J. S. Fandiño, P. Muñoz, D. Doménech, J. Capmany. A monolithic integrated photonic microwave filter. Nat. Photonics, 11, 124-129(2017).

    [51] W. Zhang, J. Yao. On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter. Opt. Lett., 43, 3622-3625(2018).

    [52] W. Li, N. H. Zhu, L. X. Wang. Continuously tunable microwave photonic notch filter with a complex coefficient. IEEE Photon. J., 3, 462-467(2011).

    [53] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets. Silicon microring resonators. Laser Photon. Rev., 6, 47-73(2012).

    [54] H. Chi, X. Zou, J. Yao. Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device. J. Lightwave Technol., 27, 511-521(2009).

    [55] W. Li, M. Li, J. Yao. A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating. IEEE Trans. Microw. Theory Tech., 60, 1287-1296(2012).

    [56] W. Liu, W. Zhang, J. Yao. A bandstop microwave photonic delay-line filter with both tunable stop-band rejection ratio and tunable frequency. IEEE MTT-S International Microwave Symposium, 1-3(2015).

    [57] B. A. Adoum, W. P. Wen. Investigation of band-stop to all pass reconfigurable filter. 4th International Conference on Intelligent and Advanced Systems (ICIAS), 1, 190-193(2012).

    [58] Y. Long, J. Xia, Y. Zhang, J. Dong, J. Wang. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter. Sci. Rep., 7, 1(2017).

    [59] A. A. Ibrahim, W. A. E. Ali, M. A. Abdelghany. Design of dual-band dual-mode band-pass filter utilizing 0° feed structure and lumped capacitors for WLAN/WIMAX applications. Electronics, 9, 1697(2020).

    [60] Y. Liu, J. Hotten, A. Choudhary, B. J. Eggleton, D. Marpaung. All-optimized integrated RF photonic notch filter. Opt. Lett., 42, 4631-4634(2017).

    [61] H. Yang, J. Li, P. Zheng, G. Hu, B. Yun, Y. Cui. A stopband and passband switchable microwave photonic filter based on integrated dual ring coupled Mach–Zehnder interferometer. IEEE Photon. J., 11, 5502608(2019).

    [62] X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao. A multifunctional photonic integrated circuit for diverse microwave signal generation, transmission, and processing. Laser Photon. Rev., 13, 1800240(2019).

    [63] X. Guo, Y. Liu, T. Yin, B. Morrison, M. Pagani, O. Daulay, W. Bogaerts, B. J. Eggleton, A. Casas-Bedoya, D. Marpaung. Versatile silicon microwave photonic spectral shaper. APL Photon., 6, 036106(2021).

    [64] S. Dang, O. Amin, B. Shihada, M.-S. Alouini. What should 6G be?. Nat. Electron., 3, 20-29(2020).

    [65] C. Han, M. Jin, Y. Tao, B. Shen, H. Shu, X. Wang. Ultra-compact silicon modulator with 110  GHz bandwidth. Optical Fiber Communication Conference, Th4C-5(2022).

    [66] S. Lischke, A. Peczek, J. S. Morgan, K. Sun, D. Steckler, Y. Yamamoto, F. Korndörfer, C. Mai, S. Marschmeyer, M. Fraschke, A. Krüger, A. Beling, L. Zimmermann. Ultra-fast germanium photodiode with 3-dB bandwidth of 265  GHz. Nat. Photonics, 15, 925-931(2021).

    [67] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [68] J. Li, P. Zheng, G. Hu, R. Zhang, B. Yun, Y. Cui. Performance improvements of a tunable bandpass microwave photonic filter based on a notch ring resonator using phase modulation with dual optical carriers. Opt. Express, 27, 9705-9715(2019).

    [69] Y. Zhang, H. Zhang, J. Zhang, J. Liu, L. Wang, D. Chen, N. Chi, X. Xiao, S. Yu. 240  Gb/s optical transmission based on an ultrafast silicon microring modulator. Photon. Res., 10, 1127-1133(2022).

    [70] Y. Wei, J. Cheng, Y. Wang, H. Zhou, J. Dong, D. Huang, F. Li, M. Li, P. K. A. Wai, X. Zhang. Fast-response silicon photonic microheater induced by parity-time symmetry breaking. Adv. Photon. Res., 3, 2200120(2021).

    [71] Y. Liu, Z. Qiu, X. Ji, A. Lukashchuk, J. He, J. Riemensberger, M. Hafermann, R. N. Wang, J. Liu, C. Ronning, T. J. Kippenberg. A photonic integrated circuit–based erbium-doped amplifier. Science, 376, 1309-1313(2022).

    [72] J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, Z. Sun. Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides. Nat. Commun., 10, 1(2019).

    [73] Z. Chen, H. Gao, D. Leenaerts, D. Milosevic, P. Baltus. A 29–37  GHz BICMOS low-noise amplifier with 28.5  dB peak gain and 3.1–4.1  dB NF. IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 288-291(2018).

    [74] X. Tong, S. Zhang, P. Zheng, Y. Huang, J. Xu, X. Shi, R. Wang. A 22–30-GHz GAN low-noise amplifier with 0.4–1.1-dB noise figure. IEEE Microw. Wireless Compon. Lett., 29, 134-136(2019).

    [75] M. Božanić, S. Sinha. Millimeter-Wave Low Noise Amplifiers(2018).

    [76] L. Xu, J. Hou, H. Tang, Y. Yu, Y. Yu, X. Shu, X. Zhang. Silicon-on-insulator-based microwave photonic filter with widely adjustable bandwidth. Photon. Res., 7, 110-115(2019).

    [77] C. G. Bottenfield, V. A. Thomas, S. E. Ralph. Silicon photonic modulator linearity and optimization for microwave photonic links. IEEE J. Sel. Top. Quantum Electron., 25, 3400110(2019).

    [78] V. J. Urick, K. J. Williams, J. D. McKinney. Fundamentals of Microwave Photonics(2015).

    [79] M. Yu, D. Barton, R. Cheng, C. Reimer, P. Kharel, L. He, L. Shao, D. Zhu, Y. Hu, H. R. Grant, L. Johansson, Y. Okawachi, A. L. Gaeta, M. Zhang, M. Lončar. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature, 612, 252-258(2022).

    Zihan Tao, Yuansheng Tao, Ming Jin, Jun Qin, Ruixuan Chen, Bitao Shen, Yichen Wu, Haowen Shu, Shaohua Yu, Xingjun Wang. Highly reconfigurable silicon integrated microwave photonic filter towards next-generation wireless communication[J]. Photonics Research, 2023, 11(5): 682
    Download Citation