• Journal of Semiconductors
  • Vol. 40, Issue 1, 012806 (2019)
Hui Hao1、2, Xiao Chen2, Zhengcheng Li2, Yang Shen2, Hu Wang2, Yanfei Zhao2, Rong Huang2, Tong Liu2, Jian Liang1, Yuxin An2, Qing Peng2, and Sunan Ding2
Author Affiliations
  • 1College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • 2Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
  • show less
    DOI: 10.1088/1674-4926/40/1/012806 Cite this Article
    Hui Hao, Xiao Chen, Zhengcheng Li, Yang Shen, Hu Wang, Yanfei Zhao, Rong Huang, Tong Liu, Jian Liang, Yuxin An, Qing Peng, Sunan Ding. Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment[J]. Journal of Semiconductors, 2019, 40(1): 012806 Copy Citation Text show less
    References

    [1] S U Engelmann, R S Wise, L Meng et al. Facile fabrication of Si-based nanostructures. Proc SPIE, 10149, 1014910(2017).

    [2] Y Hori, Z Yatabe, T Hashizume. Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors. J Appl Phys, 114, 244503(2013).

    [3] F K Shan, G X Liu, W J Lee et al. Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition. J Appl Phys, 98, 023504(2005).

    [4] H Altuntas, I Donmez, C Ozgit-Akgun et al. Electrical characteristics of β-Ga2O3 thin films grown by PEALD. J Alloys Compd, 593, 190(2014).

    [5] A A Dakhel. Investigation of opto-dielectric properties of Ti-doped Ga2O3 thin films. Solid State Sci, 20, 54-58(2013).

    [6] A Szyszka, L Lupina, G Lupina et al. Ultraviolet GaN photodetectors on Si via oxide buffer heterostructures with integrated short period oxide-based distributed Bragg reflectors and leakage suppressing metal–oxide–semiconductor contacts. J Appl Phys, 116, 083108(2014).

    [7] H Y Shih, F C Chu, A Das et al. Atomic layer deposition of gallium oxide films as gate dielectrics in AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors. Nanoscale Res Lett, 11, 235(2016).

    [8] T Yamada, J Ito, R Asahara et al. Improved interface properties of GaN-based metal-oxide-semiconductor devices with thin Ga-oxide interlayers. Appl Phys Lett, 110, 261603(2017).

    [9] G X Liu, F K Shan, J J Park et al. Electrical properties of Ga2O3-based dielectric thin films prepared by plasma enhanced atomic layer deposition (PEALD). J Electroceram, 17, 145(2006).

    [10] F P Yu, S Ou, D S Wuu. Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors. Opt Mater Express, 5, 1240(2015).

    [11] M F Al-Kuhaili, S M A Durrani, E E Khawaja. Optical properties of gallium oxide films deposited by electron-beam evaporation. Appl Phys Lett, 83, 4533(2003).

    [12] T Takeuchi, H Ishikawa, N Takeuchi et al. High resolution X-ray photoelectron spectroscopy of beta gallium oxide films deposited by ultra high vacuum radio frequency magnetron sputtering. Thin Solid Films, 516, 4593(2008).

    [13] S Ghose, S Rahman, L Hong et al. Growth and characterization of β-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors. J Appl Phys, 122, 095302(2017).

    [14] M Baldini, M Albrecht, A Fiedler et al. Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy. J Mater Sci, 51, 3650(2015).

    [15] K Sasaki, Q T Thieu, D Wakimoto et al. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy. Appl Phys Express, 10, 124201(2017).

    [16] G A Battiston, R Gerbasi, M Porchia et al. Chemical vapour deposition and characterization of gallium oxide thin films. Thin Solid Films, 279, 115(1996).

    [17] D J Comstock, J W Elam. Atomic layer deposition of Ga2O3 films using trimethylgallium and ozone. Chem Mater, 24, 4011(2012).

    [18] I Donmez, C Ozgit-Akgun, N Biyikli. Low temperature deposition of Ga2O3 thin films using trimethylgallium and oxygen plasma. J Vac Sci Technol A, 31, 01A110(2013).

    [19] D W Choi, K B Chung, J S Park. Low temperature Ga2O3 atomic layer deposition using gallium tri-isopropoxide and water. Thin Solid Films, 546, 31(2013).

    [20] R K Ramachandran, J Dendooven, J Botterman et al. Plasma enhanced atomic layer deposition of Ga2O3 thin films. J Mater Chem A, 2, 19232(2014).

    [21] R O'Donoghue, J Rechmann, M Aghaee et al. Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition. Dalton Trans, 46, 16551(2017).

    [22] B Hoex, S B S Heil, E Langereis et al. Ultra low surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl Phys Lett, 89, 042112(2006).

    [23] J M Park, S J Jang, L L Yusup et al. Plasma-enhanced atomic layer deposition of silicon nitride using a novel silylamine precursor. ACS Appl Mater Interfaces, 8, 20865(2016).

    [24] H B Profijt, S E Potts, M C M van de Sanden et al. Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. J Vac Sci Technol A, 29, 050801(2011).

    [25] M Bose, D K Basa, D N Bose. Effect of ammonia plasma pretreatment on the plasma enhanced chemical vapor deposited silicon nitride films. Mater Lett, 48, 336(2001).

    [26] J Yang, B S Eller, R J Nemanich. Surface band bending and band alignment of plasma enhanced atomic layer deposited dielectrics on Ga- and N-face gallium nitride. J Appl Phys, 116, 123702(2014).

    [27] D Li, J Huang, D Yang. Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment. Physica E, 41, 920(2009).

    [28] I Krylov, A Gavrilov, D Ritter et al. Elimination of the weak inversion hump in Si3N4/InGaAs (001) gate stacks using an in situ NH3 pre-treatment. Appl Phys Lett, 99, 203504(2011).

    [29] J M Park, S J Jang, S I Lee et al. Novel Cyclosilazane-type silicon precursor and two-step plasma for plasma-enhanced atomic layer deposition of silicon nitride. ACS Appl Mater Interfaces, 10, 9155(2018).

    [30] B J Kim, Y C Kim, J J Lee. The effect of NH3 plasma pre-treatment on the adhesion property of (Ti1-xAlx)N coatings deposited by plasma-enhanced chemical vapor deposition. Surf Coat Technol, 114, 85(1999).

    [31] E S Aydil. Real time in situ monitoring of surfaces during glow discharge processing: NH3 and H2 plasma passivation of GaAs. J Vac Sci Technol B, 13, 258(1995).

    [32] M J Tadjer, M A Mastro, N A Mahadik et al. Structural, optical, and electrical characterization of monoclinic β-Ga2O3 grown by MOVPE on sapphire substrates. J Electron Mater, 45, 2031(2016).

    [33] H S Oon, K Y Cheong. Recent development of gallium oxide thin film on GaN. Mater Sci Semicond Process, 16, 1217(2013).

    [34] P Jaiswal, U Ul Muazzam, A S Pratiyush et al. Microwave irradiation-assisted deposition of Ga2O3 on III-nitrides for deep-UV opto-electronics. Appl Phys Lett, 112, 021105(2018).

    [35] X Y Deng, C Weis, H Bluhm et al. Adsorption of water on Cu2O and Al2O3 thin films. J Phys Chem C, 112, 9668(2008).

    [36]

    [37] T L Duan, J S Pan, D S Ang. Investigation of surface band bending of Ga-face GaN by angle-resolved X-ray photoelectron spectroscopy. ECS J Solid State Sci Technol, 5, 514(2016).

    Hui Hao, Xiao Chen, Zhengcheng Li, Yang Shen, Hu Wang, Yanfei Zhao, Rong Huang, Tong Liu, Jian Liang, Yuxin An, Qing Peng, Sunan Ding. Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment[J]. Journal of Semiconductors, 2019, 40(1): 012806
    Download Citation