• Laser & Optoelectronics Progress
  • Vol. 58, Issue 1, 100004 (2021)
Dai Shoujun1、2, Yu Jin1、2、*, Mo Zeqiang1、2, Wang Jinduo1、2, He Jianguo1、2, Wang Xiaodong1、2, Meng Jingjing1、2, and Wang Baopeng1、2
Author Affiliations
  • 1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 2University of Chinese Academy of Sciences, Beijing 100049,China
  • show less
    DOI: 10.3788/LOP202158.0100004 Cite this Article Set citation alerts
    Dai Shoujun, Yu Jin, Mo Zeqiang, Wang Jinduo, He Jianguo, Wang Xiaodong, Meng Jingjing, Wang Baopeng. Particulate Control Technology Based on Pulsed Laser Deposition[J]. Laser & Optoelectronics Progress, 2021, 58(1): 100004 Copy Citation Text show less
    References

    [1] Dijkkamp D, Venkatesan T, Wu X D et al. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material[J]. Applied Physics Letters, 51, 619-621(1987). http://scitation.aip.org/content/aip/journal/apl/51/8/10.1063/1.98366

    [2] Gamaly E G, Rode A V, Luther-Davies B. Ultrafast ablation with high-pulse-rate lasers. Part I: theoretical considerations[J]. Journal of Applied Physics, 85, 4213-4221(1999). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5023149

    [3] Eason R W. May-Smith T C, Sloyan K A, et al. Multi-beam pulsed laser deposition for advanced thin-film optical waveguides[J]. Journal of Physics D: Applied Physics, 47, 034007(2014).

    [4] Cheng Y, Lu Y M, Guo Y L et al. Development of function films prepared by pulsed laser deposition technology[J]. Laser & Optoelectronics Progress, 52, 120003(2015).

    [5] Gontad F, Cesaria M, Klini A et al. Droplet distribution during sub-picosecond laser deposition of gold nanoparticles[J]. Applied Surface Science, 419, 603-613(2017). http://www.sciencedirect.com/science/article/pii/S0169433217314198

    [6] Cheng Y, Lu Y M, Huang G J et al. Pre-research on the diamond-like carbon film prepared by magnet-assistant pulsed laser deposition[J]. Infrared and Laser Engineering, 48, 1117002(2019).

    [7] van de Riet E, Dieleman J. Reduction of droplet emission and target roughening in laser ablation and deposition of metals[J]. Journal of Applied Physics, 74, 2008-2012(1993). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5146742

    [8] Luther-Davies B, Kolev V Z, Lederer M J et al. Table-top 50-W laser system for ultra-fast laser ablation[J]. Applied Physics A, 79, 1051-1055(2004).

    [9] Peng M D, Lu W E, Xia Y et al. Study on preparation and properties of superconducting niobium films by pulsed laser deposition[J]. Materials Reports, 32, 105-109(2018).

    [10] Mo G K, Liu J H, Zou Z L et al. Preparation of low-resistivity GZO thin films using pulsed laser deposition and investigation of optoelectronic properties[J]. Chinese Journal of Lasers, 46, 1003001(2019).

    [11] Liang L R, Wei A X, Mo Z. Bi3.95Er0.05Ti3O12 thin films synthesized by pulsed laser deposition technique and their dielectric properties at room temperature[J]. Chinese Journal of Lasers, 45, 0902002(2018).

    [12] Greer J A. History and current status of commercial pulsed laser deposition equipment[J]. Journal of Physics D: Applied Physics, 47, 034005(2014). http://adsabs.harvard.edu/abs/2014JPhD...47c4005G

    [13] Greer J A, Tabat M D. Large-area pulsed laser deposition: techniques and applications[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 13, 1175-1181(1995).

    [14] Rode A V, Luther-Davies B, Gamaly E G. Ultrafast ablation with high-pulse-rate lasers. Part II: experiments on laser deposition of amorphous carbon films[J]. Journal of Applied Physics, 85, 4222-4230(1999). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5023150

    [15] Fähler S, Störmer M, Krebs H U. Origin[J]. avoidance of droplets during laser ablation of metals. Applied Surface Science, 109/110, 433-436(1997).

    [16] Weaver I. Lewis C L S. Polar distribution of ablated atomic material during the pulsed laser deposition of Cu in vacuum: dependence on focused laser spot size and power density[J]. Journal of Applied Physics, 79, 7216-7222(1996).

    [17] Schenck PK, Vaudin MD, Bonnell DW, et al., 1998, 127/128/129: 655- 661.

    [18] BraunS, DietschR, HaidlM, et al. ( PLD) [J]. MicroelectronicEngineering, 2001, 57/58: 9- 15.

    [19] Sakai S, Takahashi M, Motohashi K et al. Large-area pulsed-laser deposition of dielectric and ferroelectric thin films[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 25, 903-907(2007).

    [20] Doughty C, Findikoglu A T, Venkatesan T. Steady state pulsed laser deposition target scanning for improved plume stability and reduced particle density[J]. Applied Physics Letters, 66, 1276-1278(1995). http://scitation.aip.org/content/aip/journal/apl/66/10/10.1063/1.113261

    [21] Wagner FX, ScaggsM, KochA, et al., 1998, 127/128/129: 477- 480.

    [22] Rong F X. Liquid target pulsed laser deposition[J]. Applied Physics Letters, 67, 1022-1024(1995).

    [23] Szörényi T, Kántor Z, Tóth Z et al[J]. molten metals. Applied Surface Science, 138/139, 275-279(1999).

    [24] Kántor Z, Geretovszky Z, Szörényi T. Pulsed laser deposition of metals at target temperatures close to the melting point[J]. Applied Physics A, 69, S617-S619(1999). http://link.springer.com/article/10.1007/s003390051489

    [25] Ristoscu C, Ghica C, Papadopoulou E L et al. Modification of AlN thin films morphology and structure by temporally shaping of fs laser pulses used for deposition[J]. Thin Solid Films, 519, 6381-6387(2011). http://www.sciencedirect.com/science/article/pii/S0040609011008819

    [26] Marcu A. Grigoriu1 C, Jiang W H,et al. Pulsed laser deposition of YBCO thin films in a shadow mask configuration[J]. Thin Solid Films, 360, 166-172(2000).

    [27] Popescu A C, Duta L, Dorcioman G et al. Radical modification of the wetting behavior of textiles coated with ZnO thin films and nanoparticles when changing the ambient pressure in the pulsed laser deposition process[J]. Journal of Applied Physics, 110, 064321(2011).

    [28] Dai S J, Yu J, Mo Z Q et al. Uniform and smooth molybdenum film produced through picosecond pulsed laser deposition[J]. Journal of Vacuum Science & Technology A, 37, 061506(2019).

    [29] Siew W O, Yapl S S, Yong T K et al. Effects of phase explosion in pulsed laser deposition of nickel thin film and sub-micron droplets[J]. Applied Surface Science, 257, 2775-2778(2011). http://www.sciencedirect.com/science/article/pii/S0169433210014273

    [30] Cherief N, Givord D, Liénard A et al. Laser ablation deposition and magnetic characterization of metallic thin films based on rare earth and transition metals[J]. Journal of Magnetism and Magnetic Materials, 121, 94-101(1993).

    [31] Witanachchi S, Ahmed K, Sakthivel P et al. Dual-laser ablation for particulate-free film growth[J]. Applied Physics Letters, 66, 1469-1471(1995). http://scitation.aip.org/content/aip/journal/apl/66/12/10.1063/1.113657

    [32] Mukherjee P, Chen S D, Cuff J B et al. Evidence for the physical basis and universality of the elimination of particulates using dual-laser ablation. II. Dynamic time-resolved target reflectivity of metals and film growth of Zn[J]. Journal of Applied Physics, 91, 1837-1844(2002). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5031779

    [33] Mukherjee D, Hyde R, Mukherjee P et al. Advantages of dual-laser ablation in the growth of multicomponent thin films[J]. AIP Conference Proceedings, 1464, 325-335(2012).

    [34] Prentice J J. Grant-Jacob J A, Kurilchik S V, et al. Particulate reduction in PLD-grown crystalline films via bi-directional target irradiation[J]. Applied Physics A, 125, 1-8(2019).

    [35] Amoruso S, Ausanio G, Bruzzese R et al. Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration[J]. Applied Surface Science, 252, 4863-4870(2006). http://www.sciencedirect.com/science/article/pii/S0169433205013760

    [36] Ristoscu C, Socol G, Ghica C et al. Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC[J]. Applied Surface Science, 252, 4857-4862(2006). http://www.sciencedirect.com/science/article/pii/S016943320501370X

    [37] Amoruso S, Ausanio G, Barone A C et al. Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum[J]. Applied Surface Science, 254, 1012-1016(2007).

    [38] Liu J R, Bai T, Yao D S et al. Study on pulsed excimer laser deposited films[J]. High Power Laser & Particle Beams, 14, 646-650(2002).

    [39] Gamaly E G, Rode A, Uteza O et al. Control over a phase state of the laser plume ablated by femtosecond laser: spatial pulse shaping[J]. Journal of Applied Physics, 95, 2250-2257(2004). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5038723

    [40] Salminen T, Hahtala M, Seppälä I et al. Pulsed laser deposition of yttria-stabilized zirconium dioxide with a high repetition rate picosecond fiber laser[J]. Applied Physics A, 98, 487-490(2010). http://link.springer.com/article/10.1007/s00339-009-5482-x

    [41] Salminen T, Hahtala M, Seppälä I et al. Picosecond pulse laser ablation of yttria-stabilized zirconia from kilohertz to megahertz repetition rates[J]. Applied Physics A, 101, 735-738(2010). http://link.springer.com/article/10.1007/s00339-010-5931-6

    [42] Pervolaraki M, Mihailescu C N, Luculescu C R et al. Picosecond ultrafast pulsed laser deposition of SrTiO3[J]. Applied Surface Science, 336, 278-282(2015). http://smartsearch.nstl.gov.cn/paper_detail.html?id=99aa3d344766da31f4de12783bb0eba1

    [43] Teghil R. Santagata A, de Bonis A, et al. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy[J]. Physica Scripta, 78, 058113(2008).

    [44] György E, Mihailescu I N, Kompitsas M et al. Deposition of particulate-free thin films by two synchronised laser sources: effects of ambient gas pressure and laser fluence[J]. Thin Solid Films, 446, 178-183(2004). http://www.sciencedirect.com/science/article/pii/S0040609003013798

    [45] Krstulović N, Salamon K, Modic M et al. Dynamics of double-pulse laser produced titanium plasma inferred from thin film morphology and optical emission spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 107, 67-74(2015).

    [46] Krstulović N, Čutić N, Milošević S. Cavity ringdown spectroscopy of collinear dual-pulse laser plasmas in vacuum[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 271-277(2009).

    [47] Murakami M, Liu B, Hu Z D et al. Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation[J]. Applied Physics Express, 2, 042501(2009).

    [48] Thelander E, Rauschenbach B. Influence of burst pulses on the film topography in picosecond pulsed laser deposition of LaAlO3[J]. Journal of Physics: Conference Series, 356, 012015(2012). http://dx.doi.org/10.1088/1742-6596/356/1/012015

    [49] Dai S J, Yu J, Mo Z Q et al. Influence of double pulse ablation on the film topography in picosecond pulsed laser deposition of nickel[J]. Applied Physics Express, 13, 035505(2020). http://iopscience.iop.org/article/10.35848/1882-0786/ab769e

    [50] Broekmaat J J, Dekkers J M, Janssens J A, filter: EP20100170223[P] et al. -07-21(2010).

    [51] Gorbunov AA, PompeW, SewingA, et al., 1996, 96/97/98: 649- 655.

    [52] Tselev A, Gorbunov A, Pompe W. Cross-beam pulsed laser deposition: General characteristic[J]. Review of Scientific Instruments, 72, 2665-2672(2001).

    [53] Inoue N, Ozaki T, Monnaka T et al. A new pulsed laser deposition method using an aperture plate[J]. Japanese Journal of Applied Physics, 36, 704-709(1997). http://adsabs.harvard.edu/abs/1997JaJAP..36..704I

    [54] Jordan R, Cole D[J]. Lunney J G. Pulsed laser deposition of particulate-free thin films using a curved magnetic filter. Applied Surface Science, 109/110, 403-407(1997).

    [55] Tsui Y Y, Minami H, Vick D et al. Debris reduction for copper and diamond-like carbon thin films produced by magnetically guided pulsed laser deposition[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 20, 744-747(2002).

    [56] Cheng Y[M]. Technology of diamond-like carbon films prepared by pulsed laser deposition, 302-305(2017).

    [57] Stafe M, Marcu A, Puscas N. Pulsed Laser Ablation of Solids Basics, Theory and Applications[M]. Heidelberg: Springer, 175-181(2014).

    [58] Marcu A, Grigoriu C, Jiang W et al. Deposition parameters influences in pulsed laser deposition by plume reflection[J]. Proceedings of SPIE, 5227, 312-317(2003).

    [59] Liimatainen J, Kekkonen V, Piirto J et al. Ultra short pulsed laser deposition technology for industrial applications[J]. Journal of Materials Science and Engineering B, 5, 196-205(2015).

    [60] Kekkonen V, Chaudhuri S, Clarke F et al. Picosecond pulsed laser deposition of metal-oxide sensing layers with controllable porosity for gas sensor applications[J]. Applied Physics A, 122, 1-7(2016). http://link.springer.com/article/10.1007/s00339-016-9760-0

    [61] Huotari J, Kekkonen V, Puustinen J et al. Pulsed laser deposition for improved metal-oxide gas sensing layers[J]. Procedia Engineering, 168, 1066-1069(2016).

    Dai Shoujun, Yu Jin, Mo Zeqiang, Wang Jinduo, He Jianguo, Wang Xiaodong, Meng Jingjing, Wang Baopeng. Particulate Control Technology Based on Pulsed Laser Deposition[J]. Laser & Optoelectronics Progress, 2021, 58(1): 100004
    Download Citation