• Laser & Optoelectronics Progress
  • Vol. 59, Issue 6, 0617004 (2022)
Shanxiang Zhang1、2、4, Xiaoyu Tang1、2、4, and Huan Qin1、2、3、4、*
Author Affiliations
  • 1Key Laboratory of Laser Life Sciences, Ministry of Education, South China Normal University, Guangzhou , Guangdong 510631, China
  • 2Guangdong Provincial Key Laboratory of Laser Life Sciences, Guangzhou , Guangdong 510631, China
  • 3Guangzhou Key Laboratory of Spectral Analysis and Functional Probe, Guangzhou , Guangdong 510631, China
  • 4College of Biophotonics, South China Normal University, Guangzhou , Guangdong 510631, China
  • show less
    DOI: 10.3788/LOP202259.0617004 Cite this Article Set citation alerts
    Shanxiang Zhang, Xiaoyu Tang, Huan Qin. Research Progress and Prospect of Microwave-Induced Thermoacoustic Imaging Technology[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617004 Copy Citation Text show less
    References

    [1] Strax P. Detection of breast cancer[J]. Cancer, 66, 1336-1340(1990).

    [2] Sakdinawat A, Attwood D. Nanoscale X-ray imaging[J]. Nature Photonics, 4, 840-848(2010).

    [3] Pfeiffer F, Bech M, Bunk O et al. Hard-X-ray dark-field imaging using a grating interferometer[J]. Nature Materials, 7, 134-137(2008).

    [4] Chapman D, Thomlinson W, Johnston R E et al. Diffraction enhanced X-ray imaging[J]. Physics in Medicine and Biology, 42, 2015-2025(1997).

    [5] Teh W, Wilson A R M. The role of ultrasound in breast cancer screening. A consensus statement by the European Group for breast cancer screening[J]. European Journal of Cancer, 34, 449-450(1998).

    [6] Duric N, Littrup P, Babkin A et al. Development of ultrasound tomography for breast imaging: technical assessment[J]. Medical Physics, 32, 1375-1386(2005).

    [7] Hynynen K, Clement G T, McDannold N et al. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls[J]. Magnetic Resonance in Medicine, 52, 100-107(2004).

    [8] Synnevåg J F, Austeng A, Holm S. Adaptive beamforming applied to medical ultrasound imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54, 1606-1613(2007).

    [9] Bamber J, Cosgrove D, Dietrich C F et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: basic principles and technology[J]. Ultraschall in Der Medizin, 34, 169-184(2013).

    [10] Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61, 102-119(2014).

    [11] Zaleska-Dorobisz U, Kaczorowski K, Pawluś A et al. Ultrasound elastography-review of techniques and its clinical applications[J]. Advances in Clinical and Experimental Medicine, 23, 645-655(2014).

    [12] Brooksby B, Pogue B W, Jiang S D et al. Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 8828-8833(2006).

    [13] Bendszus M, Wessig C, Solymosi L et al. MRI of peripheral nerve degeneration and regeneration: correlation with electrophysiology and histology[J]. Experimental Neurology, 188, 171-177(2004).

    [14] Kramer H, Pickhardt P J, Kliewer M A et al. Accuracy of liver fat quantification with advanced CT, MRI, and ultrasound techniques: prospective comparison with MR spectroscopy[J]. American Journal of Roentgenology, 208, 92-100(2017).

    [15] Pizurica A, Wink A M, Vansteenkiste E et al. A review of wavelet denoising in MRI and ultrasound brain imaging[J]. Current Medical Imaging Reviews, 2, 247-260(2006).

    [16] Pooler B D, Wiens C N, McMillan A et al. Monitoring fatty liver disease with MRI following bariatric surgery: a prospective, dual-center study[J]. Radiology, 290, 682-690(2019).

    [17] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [18] Gu X J, Xu Y, Jiang H B. Mesh-based enhancement schemes in diffuse optical tomography[J]. Medical Physics, 30, 861-869(2003).

    [19] Deng K X, Cui M X, Zuo H Z et al. Speed-of-sound heterogeneity compensation method in photoacoustic computed tomographic image reconstruction[J]. Chinese Journal of Lasers, 48, 1507001(2021).

    [20] Li J, Miao S C, Song S Z et al. Reconstruction algorithm based on a virtual parallel-projection model for photoacoustic tomography using an ultrasonic transducer with a large active surface[J]. Chinese Journal of Lasers, 48, 1607001(2021).

    [21] Xu K, Wang C, Zhang M J et al. Photoacoustic spectrum analysis of atherosclerotic vessels[J]. Laser & Optoelectronics Progress, 58, 1217001(2021).

    [22] Lu Q S, Jin L H, Xu Y K. Progress on applications of deep learning in super-resolution microscopy imaging[J]. Laser & Optoelectronics Progress, 58, 2400007(2021).

    [23] Wang X, Tu S J, Liu X et al. Advance and prospect for three-dimensional super-resolution microscopy[J]. Laser & Optoelectronics Progress, 58, 2200001(2021).

    [24] Milstein A B, Oh S, Webb K J et al. Fluorescence optical diffusion tomography[J]. Applied Optics, 42, 3081-3094(2003).

    [25] Yao L, Guo G F, Jiang H B. Quantitative microwave-induced thermoacoustic tomography[J]. Medical Physics, 37, 3752-3759(2010).

    [26] Kruger R A, Kopecky K K, Aisen A M et al. Thermoacoustic CT with radio waves: a medical imaging paradigm[J]. Radiology, 211, 275-278(1999).

    [27] Singhvi A, Boyle K C, Fallahpour M et al. A microwave-induced thermoacoustic imaging system with non-contact ultrasound detection[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 66, 1587-1599(2019).

    [28] Aliroteh M S, Arbabian A. Microwave-induced thermoacoustic imaging of subcutaneous vasculature with near-field RF excitation[J]. IEEE Transactions on Microwave Theory and Techniques, 66, 577-588(2018).

    [29] Li C H, Pramanik M, Ku G et al. Image distortion in thermoacoustic tomography caused by microwave diffraction[J]. Physical Review E, 77, 031923(2008).

    [30] Haltmeier M, Scherzer O, Burgholzer P et al. Thermoacoustic computed tomography with large planar receivers[J]. Inverse Problems, 20, 1663-1673(2004).

    [31] Razansky D, Kellnberger S, Ntziachristos V. Near-field radiofrequency thermoacoustic tomography with impulse excitation[J]. Medical Physics, 37, 4602-4607(2010).

    [32] Bell A G. On the production and reproduction of sound by light[J]. American Journal of Science, s3-20, 305-324(1880).

    [33] Bowen T. Radiation-induced thermoacoustic soft tissue imaging[C], 817-822(1981).

    [34] Guo T C, Guo W W, Larsen L E. Microwave-induced thermoacoustic effect in dielectrics and its coupling to external medium-a thermodynamical formulation[J]. IEEE Transactions on Microwave Theory and Techniques, 32, 835-843(1984).

    [35] Kruger R A, Kiser W L, Reinecke D R et al. Thermoacoustic computed tomography of the breast at 434 MHz[C], 591-594(1999).

    [36] Ku G, Wang L V. Scanning thermoacoustic tomography in biological tissue[J]. Medical Physics, 27, 1195-1202(2000).

    [37] Ku G, Wang L V. Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast[J]. Medical Physics, 28, 4-10(2001).

    [38] Xu Y, Feng D Z, Wang L V. Exact frequency-domain reconstruction for thermoacoustic tomography. Ⅰ. planar geometry[J]. IEEE Transactions on Medical Imaging, 21, 823-828(2002).

    [39] Xu Y, Xu M H, Wang L V. Exact frequency-domain reconstruction for thermoacoustic tomography: Ⅱ: cylindrical geometry[J]. IEEE Transactions on Medical Imaging, 21, 829-833(2002).

    [40] Xu M H, Wang L V. Time-domain reconstruction for thermoacoustic tomography in a spherical geometry[J]. IEEE Transactions on Medical Imaging, 21, 814-822(2002).

    [41] Patch S K. Thermoacoustic tomography: consistency conditions and the partial scan problem[J]. Physics in Medicine and Biology, 49, 2305-2315(2004).

    [42] Eckhart A T, Balmer R T, See W A et al. Ex vivo thermoacoustic imaging over large fields of view with 108 MHz irradiation[J]. IEEE Transactions on Biomedical Engineering, 58, 2238-2246(2011).

    [43] Fallon D, Yan L, Hanson G W et al. RF testbed for thermoacoustic tomography[J]. The Review of Scientific Instruments, 80, 064301(2009).

    [44] Patch S K, Hull D, Thomas M et al. Thermoacoustic contrast of prostate cancer due to heating by very high frequency irradiation[J]. Physics in Medicine and Biology, 60, 689-708(2015).

    [45] Patch S K, Hull D, See W A et al. Toward quantitative whole organ thermoacoustics with a clinical array plus one very low-frequency channel applied to prostate cancer imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63, 245-255(2016).

    [46] Patch S K, Covo M K, Jackson A et al. Thermoacoustic range verification using a clinical ultrasound array provides perfectly co-registered overlay of the Bragg peak onto an ultrasound image[J]. Physics in Medicine and Biology, 61, 5621-5638(2016).

    [47] Kellnberger S, Hajiaboli A, Razansky D et al. Near-field thermoacoustic tomography of small animals[J]. Physics in Medicine and Biology, 56, 3433-3444(2011).

    [48] Omar M, Kellnberger S, Sergiadis G et al. Near-field thermoacoustic imaging with transmission line pulsers[J]. Medical Physics, 39, 4460-4466(2012).

    [49] Hajiaboli A, Kellnberger S, Ntziachristos V et al. Design and time-domain analysis of a high-voltage impulsed test-bed for near-field thermoacoustic tomography[J]. Progress in Electromagnetics Research, 139, 105-119(2013).

    [50] Huang L, Yao L, Liu L X et al. Quantitative thermoacoustic tomography: recovery of conductivity maps of heterogeneous media[J]. Applied Physics Letters, 101, 244106(2012).

    [51] Huang L, Rong J, Yao L et al. Quantitative thermoacoustic tomography for ex vivo imaging conductivity of breast tissue[J]. Chinese Physics Letters, 30, 124301(2013).

    [52] Chi Z H, Zhao Y, Huang L et al. Thermoacoustic imaging of rabbit knee joints[J]. Medical Physics, 43, 6226-6233(2016).

    [53] Huang L, Cai W, Zhao Y et al. In vivo tumor detection with combined MR-photoacoustic-thermoacoustic imaging[J]. Journal of Innovative Optical Health Sciences, 9, 1650015(2016).

    [54] Tang Y H, Zheng Z, Xie S M et al. Thermoacoustic imaging based on noise suppression of multi-channel amplifier and additive circuit[J]. Acta Physica Sinica, 69, 20201036(2020).

    [55] Bauer D R, Wang X, Vollin J et al. Spectroscopic thermoacoustic imaging of water and fat composition[J]. Applied Physics Letters, 101, 033705(2012).

    [56] Wang X, Bauer D R, Vollin J L et al. Impact of microwave pulses on thermoacoustic imaging applications[J]. IEEE Antennas and Wireless Propagation Letters, 11, 1634-1637(2012).

    [57] Wang X, Bauer D R, Witte R et al. Microwave-induced thermoacoustic imaging model for potential breast cancer detection[J]. IEEE Transactions on Bio-Medical Engineering, 59, 2782-2791(2012).

    [58] Xu L F, Wang X. Focused microwave breast hyperthermia monitored by thermoacoustic imaging: a computational feasibility study applying realistic breast phantoms[J]. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 4, 81-88(2020).

    [59] Qin T, Wang X, Qin Y X et al. Quality improvement of thermoacoustic imaging based on compressive sensing[J]. IEEE Antennas and Wireless Propagation Letters, 14, 1200-1203(2015).

    [60] Wang X, Qin T, Witte R S et al. Computational feasibility study of contrast-enhanced thermoacoustic imaging for breast cancer detection using realistic numerical breast phantoms[J]. IEEE Transactions on Microwave Theory and Techniques, 63, 1489-1501(2015).

    [61] Nan H, Arbabian A. Stepped-frequency continuous-wave microwave-induced thermoacoustic imaging[J]. Applied Physics Letters, 104, 224104(2014).

    [62] Aliroteh M, Nan H, Arbabian A. Microwave-induced thermoacoustic tomography for subcutaneous vascular imaging[C], 16429225(2016).

    [63] Feng X H, Gao F, Zheng Y J. Magnetically mediated thermoacoustic imaging toward deeper penetration[J]. Applied Physics Letters, 103, 083704(2013).

    [64] Feng X H, Gao F, Zheng Y J. Modulatable magnetically mediated thermoacoustic imaging with magnetic nanoparticles[J]. Applied Physics Letters, 106, 153702(2015).

    [65] Gao F, Feng X H, Zheng Y J. Advanced photoacoustic and thermoacoustic sensing and imaging beyond pulsed absorption contrast[J]. Journal of Optics, 18, 074006(2016).

    [66] Zeng L M, Xing D, Gu H M et al. Fast microwave-induced thermoacoustic tomography based on multi-element phase-controlled focus technique[J]. Chinese Physics Letters, 23, 1215-1218(2006).

    [67] Zeng L M, Xing D, Gu H M et al. High antinoise photoacoustic tomography based on a modified filtered backprojection algorithm with combination wavelet[J]. Medical Physics, 34, 556-563(2007).

    [68] Nie L M, Xing D, Yang D W et al. Detection of foreign body using fast thermoacoustic tomography with a multielement linear transducer array[J]. Applied Physics Letters, 90, 174109-174111(2007).

    [69] Nie L M, Xing D, Zhou Q et al. Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging[J]. Medical Physics, 35, 4026-4032(2008).

    [70] Nie L M, Xing D, Yang S H. In vivo detection and imaging of low-density foreign body with microwave-induced thermoacoustic tomography[J]. Medical Physics, 36, 3429-3437(2009).

    [71] Lou C G, Xing D. Temperature monitoring utilizing thermoacoustic signals during pulsed microwave thermotherapy: a feasibility study[J]. International Journal of Hyperthermia, 26, 338-346(2010).

    [72] Lou C G, Nie L M, Xu D. Effect of excitation pulse width on thermoacoustic signal characteristics and the corresponding algorithm for optimization of imaging resolution[J]. Journal of Applied Physics, 110, 083101(2011).

    [73] Cao C J, Nie L M, Lou C G et al. The feasibility of using microwave-induced thermoacoustic tomography for detection and evaluation of renal calculi[J]. Physics in Medicine and Biology, 55, 5203-5212(2010).

    [74] Lou C G, Yang S H, Ji Z et al. Ultrashort microwave-induced thermoacoustic imaging: a breakthrough in excitation efficiency and spatial resolution[J]. Physical Review Letters, 109, 218101(2012).

    [75] Fu Y, Ji Z, Ding W Z et al. Thermoacoustic imaging over large field of view for three-dimensional breast tumor localization: a phantom study[J]. Medical Physics, 41, 110701(2014).

    [76] Ding W Z, Lou C G, Qiu J S et al. Targeted Fe-filled carbon nanotube as a multifunctional contrast agent for thermoacoustic and magnetic resonance imaging of tumor in living mice[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 12, 235-244(2016).

    [77] Ye F H, Ji Z, Ding W Z et al. Ultrashort microwave-pumped real-time thermoacoustic breast tumor imaging system[J]. IEEE Transactions on Medical Imaging, 35, 839-844(2016).

    [78] Ding W Z, Ji Z, Ye F H et al. Near-field microwave distribution measurement with a point detector base on thermoacoustic effect[J]. IEEE Transactions on Microwave Theory and Techniques, 63, 3272-3276(2015).

    [79] Ji Z, Lou C G, Yang S H et al. Three-dimensional thermoacoustic imaging for early breast cancer detection[J]. Medical Physics, 39, 6738-6744(2012).

    [80] Ji Z, Ding W Z, Ye F H et al. Shape-adapting thermoacoustic imaging system based on flexible multi-element transducer[J]. Applied Physics Letters, 107, 094104(2015).

    [81] Ji Z, Lou C G, Shi Y J et al. A microwave detection way by electromagnetic and elastic resonance: breaking the bottleneck of spatial resolution in microwave imaging[J]. Applied Physics Letters, 107, 164103(2015).

    [82] Ji Z, Ding W Z, Yang S H et al. Remote measurement of microwave distribution based on optical detection[J]. Applied Physics Letters, 108, 014104(2016).

    [83] Ji Z, Ding W Z, Ye F H et al. Handheld thermoacoustic scanning system based on a linear-array transducer[J]. Ultrasonic Imaging, 38, 276-284(2016).

    [84] Ji Z, Fu Y, Yang S H. Microwave-induced thermoacoustic imaging for early breast cancer detection[J]. Journal of Innovative Optical Health Sciences, 6, 1350001(2013).

    [85] Wang B S, Xiong N P, Sun Y F et al. Microwave-induced thermoacoustic imaging of small animals applying scanning orthogonal polarization excitation[J]. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology(2021).

    [86] Wang X, Qin T, Qin Y X et al. Microwave-induced thermoacoustic imaging for embedded explosives detection in high-water content medium[J]. IEEE Transactions on Antennas and Propagation, 67, 4803-4810(2019).

    [87] Wang X, Qin T, Qin Y X et al. Microwave-induced thermoacoustic communications[J]. IEEE Transactions on Microwave Theory and Techniques, 65, 3369-3378(2017).

    [88] Qin T, Wang X, Qin Y X et al. Experimental validation of a numerical model for thermoacoustic imaging applications[J]. IEEE Antennas and Wireless Propagation Letters, 14, 1235-1238(2015).

    [89] Wang X, Bauer D R, Witte R S et al. A hybrid microwave/acoustic communication scheme-thermoacoustic communication[C], 14021809(2013).

    [90] Gao F, Zheng Y J, Feng X H et al. Thermoacoustic resonance effect and circuit modelling of biological tissue[J]. Applied Physics Letters, 102, 063702(2013).

    [91] Zangerl G, Scherzer O, Haltmeier M. Circular integrating detectors in photo and thermoacoustic tomography[J]. Inverse Problems in Science and Engineering, 17, 133-142(2009).

    [92] Agranovsky M, Kuchment P. Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed[J]. Inverse Problems, 23, 2089-2102(2007).

    [93] Haltmeier M, Scherzer O, Burgholzer P et al. Thermoacoustic tomography and the circular radon transform: exact inversion formula[J]. Mathematical Models and Methods in Applied Sciences, 17, 635-655(2007).

    [94] Lim K H, Lee J H, Liu Q H. Thermoacoustic tomography forward modeling with the spectral element method[J]. Medical Physics, 35, 4-12(2008).

    [95] Mashal A, Booske J H, Hagness S C. Toward contrast-enhanced microwave-induced thermoacoustic imaging of breast cancer: an experimental study of the effects of microbubbles on simple thermoacoustic targets[J]. Physics in Medicine and Biology, 54, 641-650(2009).

    [96] Passeri D, Sassi U, Bettucci A et al. Thermoacoustic emission from carbon nanotubes imaged by atomic force microscopy[J]. Advanced Functional Materials, 22, 2956-2963(2012).

    [97] Rejesh N A, Pullagurla H, Pramanik M. Deconvolution-based deblurring of reconstructed images in photoacoustic/thermoacoustic tomography[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 30, 1994-2001(2013).

    [98] Pramanik M. Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31, 621-627(2014).

    [99] Ogunlade O, Beard P. Exogenous contrast agents for thermoacoustic imaging: an investigation into the underlying sources of contrast[J]. Medical Physics, 42, 170-181(2015).

    [100] Zhang C, Wang Y Y. A reconstruction algorithm for thermoacoustic tomography with compensation for acoustic speed heterogeneity[J]. Physics in Medicine and Biology, 53, 4971-4982(2008).

    [101] Zhu X Z, Zhao Z Q, Wang J G et al. Active adjoint modeling method in microwave induced thermoacoustic tomography for breast tumor[J]. IEEE Transactions on Bio-Medical Engineering, 61, 1957-1966(2014).

    [102] Peng H X, Hu J L, Hu C Y et al. Fe3O4 @MnO2 @PAA nanoparticles for magnetically targeted microwave-thermal therapy guided by thermoacoustic imaging[J]. Journal of Biomaterials and Tissue Engineering, 6, 12-19(2016).

    [103] Dewantari A, Jeon S Y, Kim S et al. Analysis of microwave-induced thermoacoustic signal generation using computer simulation[J]. Journal of Electromagnetic Engineering and Science, 16, 1-6(2016).

    [104] Hernández-Rosales E, Cedeño E, Hernandez-Wong J et al. Thermoacoustic and thermoreflectance imaging of biased integrated circuits: voltage and temperature maps[J]. Applied Physics Letters, 109, 041902(2016).

    [105] Liu S L, Zhao Z Q, Zhu X Z et al. Analysis of short pulse impacting on microwave induced thermo-acoustic tomography[J]. Progress in Electromagnetics Research C, 61, 37-46(2016).

    [106] Mihiretie B M, Cederkrantz D, Sundin M et al. Thermal depth profiling of materials for defect detection using hot disk technique[J]. AIP Advances, 6, 085217(2016).

    [107] He Y, Shen Y C, Liu C J et al. Suppressing excitation effects in microwave induced thermoacoustic tomography by multi-view Hilbert transformation[J]. Applied Physics Letters, 110, 053701(2017).

    [108] Islam S, Mahmud S, Biglarbegian M et al. Effect of magnetic field on the Nusselt number of a multi-plate thermoacoustic system[J]. International Journal of Thermal Sciences, 108, 145-158(2016).

    [109] Wu Y B, Tang Z L, Chi Y et al. A simultaneous multi-probe detection label-free optical-resolution photoacoustic microscopy technique based on microcavity transducer[J]. Journal of Innovative Optical Health Sciences, 6, 1350027(2013).

    [110] Zhao Y, Yang S H. Photoacoustic viscoelasticity imaging of biological tissues with intensity-modulated continuous-wave laser[J]. Journal of Innovative Optical Health Sciences, 6, 1350033(2013).

    [111] Zhong J P, Yang S H. Contrast-enhanced photoacoustic imaging using indocyanine green-containing nanoparticles[J]. Journal of Innovative Optical Health Sciences, 7, 1350029(2014).

    [112] Yan B Y, Qin H. Indocyanine green loaded graphene oxide for high-efficient photoacoustic tumor therapy[J]. Journal of Innovative Optical Health Sciences, 9, 1642001(2016).

    [113] Yin B Z, Xing D, Wang Y et al. Fast photoacoustic imaging system based on 320-element linear transducer array[J]. Physics in Medicine and Biology, 49, 1339-1346(2004).

    [114] Yang D, Xing D, Gu H M et al. Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm[J]. Applied Physics Letters, 87, 194101(2005).

    [115] Huang L, Zheng Z, Chi Z H et al. Technical note: compact thermoacoustic imaging system based on a low-cost and miniaturized microwave generator for in vivo biomedical imaging[J]. Medical Physics, 48, 4242-4248(2021).

    [116] Chi Z H, Zhao Y, Yang J G et al. Thermoacoustic tomography of in vivo human finger joints[J]. IEEE Transactions on Bio-Medical Engineering, 66, 1598-1608(2019).

    [117] Chi Z H, Huang L, Ge S L et al. Technical note: anti-phase microwave illumination-based thermoacoustic tomography of in vivo human finger joints[J]. Medical Physics, 46, 2363-2369(2019).

    [118] Liang X, Guo H, Liu Q et al. Thermoacoustic endoscopy[J]. Applied Physics Letters, 116, 013702(2020).

    [119] Xie S M, Huang L, Wang X et al. Reflection mode photoacoustic/thermoacoustic dual modality imaging based on hollow concave array[J]. Acta Physica Sinica, 70, 100701(2021).

    [120] Cheng Z W, Wu L H, Qiu T S et al. An excitation-reception collinear probe for ultrasonic, photoacoustic, and thermoacoustic tri-modal volumetric imaging[J]. IEEE Transactions on Medical Imaging, 40, 3498-3506(2021).

    [121] Zhao Y, Ji Z, Qin B H et al. A thermoacoustic imaging system with variable curvature and multi-dimensional detection adapted to breast tumor screening[J]. Journal of Applied Physics, 124, 144902(2018).

    [122] Wang H H, Ma Y Z, Zhao S X et al. Fabry-Pérot interference principle-based non-contact thermoacoustic imaging system for breast tumor screening[J]. Applied Physics Letters, 119, 143701(2021).

    [123] Song Q, Wang Z C, Wang B S et al. Multiple back projection with impact factor algorithm based on circular scanning for microwave-induced thermoacoustic tomography[J]. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology(2021).

    [124] Wang B W, Zhao Z Q, Zhu X Z et al. Hierarchical dictionary compressive sensing (HDCS) method in microwave induced thermal acoustic tomography[J]. Biomedical Signal Processing and Control, 14, 148-157(2014).

    [125] Wang B S, Sun Y F, Wang Z C et al. Three-dimensional microwave-induced thermoacoustic imaging based on compressive sensing using an analytically constructed dictionary[J]. IEEE Transactions on Microwave Theory and Techniques, 68, 377-386(2020).

    [126] Sun Y F, Li C Z, Wang B S et al. A low-cost compressive thermoacoustic tomography system for hot and cold foreign bodies detection[J]. IEEE Sensors Journal, 21, 23588-23596(2021).

    [127] Wang B S, Sun Y F, Li C Z et al. 2-D noninvasive temperature measurement of biological samples based on compressive thermoacoustic tomography[J]. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 5, 371-378(2021).

    [128] Joines W T, Zhang Y, Li C X et al. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz[J]. Medical Physics, 21, 547-550(1994).

    [129] Zhao Y, Chi Z H, Huang L et al. Thermoacoustic tomography of in vivo rat brain[J]. Journal of Innovative Optical Health Sciences, 10, 1740001(2017).

    [130] Zhao Y, Shan T Q, Chi Z H et al. Thermoacoustic tomography of germinal matrix hemorrhage in neonatal mouse cerebrum[J]. Journal of X-Ray Science and Technology, 28, 83-93(2020).

    [131] Chi Z H, Huang L, Wu D et al. First assessment of thermoacoustic tomography for in vivo detection of rheumatoid arthritis in the finger joints detection of rheumatoid arthritis in the finger joints[J]. Medical Physics, 34767650(2021).

    [132] Qin H, Qin B H, Yuan C et al. Pancreatic cancer detection via Galectin-1-targeted thermoacoustic imaging: validation in an in vivo heterozygosity model[J]. Theranostics, 10, 9172-9185(2020).

    [133] Zheng Z, Huang L, Jiang H B. Label-free thermoacoustic imaging of human blood vessels in vivo[J]. Applied Physics Letters, 113, 253702(2018).

    [134] Fang W, Shi Y J, Xing D. Vacancy-defect-dipole amplifies the thermoacoustic conversion efficiency of carbon nanoprobes[J]. Nano Research, 13, 2413-2419(2020).

    [135] Wu D, Huang L, Jiang M S et al. Contrast agents for photoacoustic and thermoacoustic imaging: a review[J]. International Journal of Molecular Sciences, 15, 23616-23639(2014).

    [136] Zhang D J, Wang B S, Wang X. Enhanced and modulated microwave-induced thermoacoustic imaging by ferromagnetic resonance[J]. Applied Physics Express, 12, 077001(2019).

    [137] Wen L W, Yang S H, Zhong J P et al. Thermoacoustic imaging and therapy guidance based on ultra-short pulsed microwave pumped thermoelastic effect induced with superparamagnetic iron oxide nanoparticles[J]. Theranostics, 7, 1976-1989(2017).

    [138] Zhai S D, Hu X L, Ji Z et al. Pulsed microwave-pumped drug-free thermoacoustic therapy by highly biocompatible and safe metabolic polyarginine probes[J]. Nano Letters, 19, 1728-1735(2019).

    [139] Wen L W, Ding W Z, Yang S H et al. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes[J]. Biomaterials, 75, 163-173(2016).

    [140] Wang X, Witte R S, Xin H. Thermoacoustic and photoacoustic characterizations of few-layer graphene by pulsed excitations[J]. Applied Physics Letters, 108, 143104(2016).

    [141] Yuan C, Qin B H, Qin H et al. Increasing dielectric loss of a graphene oxide nanoparticle to enhance the microwave thermoacoustic imaging contrast of breast tumor[J]. Nanoscale, 11, 22222-22229(2019).

    [142] Wu Z J, Zeng F C, Zhang L et al. Defect-rich titanium nitride nanoparticle with high microwave-acoustic conversion efficiency for thermoacoustic imaging-guided deep tumor therapy[J]. Nano Research, 14, 2717-2727(2021).

    [143] Chen Y S, Zhao Y, Beinat C et al. Ultra-high-frequency radio-frequency acoustic molecular imaging with saline nanodroplets in living subjects[J]. Nature Nanotechnology, 16, 717-724(2021).

    Shanxiang Zhang, Xiaoyu Tang, Huan Qin. Research Progress and Prospect of Microwave-Induced Thermoacoustic Imaging Technology[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617004
    Download Citation