• Laser & Optoelectronics Progress
  • Vol. 59, Issue 6, 0617004 (2022)
Shanxiang Zhang1、2、4, Xiaoyu Tang1、2、4, and Huan Qin1、2、3、4、*
Author Affiliations
  • 1Key Laboratory of Laser Life Sciences, Ministry of Education, South China Normal University, Guangzhou , Guangdong 510631, China
  • 2Guangdong Provincial Key Laboratory of Laser Life Sciences, Guangzhou , Guangdong 510631, China
  • 3Guangzhou Key Laboratory of Spectral Analysis and Functional Probe, Guangzhou , Guangdong 510631, China
  • 4College of Biophotonics, South China Normal University, Guangzhou , Guangdong 510631, China
  • show less
    DOI: 10.3788/LOP202259.0617004 Cite this Article Set citation alerts
    Shanxiang Zhang, Xiaoyu Tang, Huan Qin. Research Progress and Prospect of Microwave-Induced Thermoacoustic Imaging Technology[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617004 Copy Citation Text show less
    Magnetron mode microwave source.(a) Schematic of the magnetron modulation mode; (b) typical magnetron modulation mode microwave generator[78]; (c) top view and side view of the miniaturized microwave generator[115]; (d) schematic of a small MTAI system115]
    Fig. 1. Magnetron mode microwave source.(a) Schematic of the magnetron modulation mode; (b) typical magnetron modulation mode microwave generator[78]; (c) top view and side view of the miniaturized microwave generator[115]; (d) schematic of a small MTAI system115]
    High voltage discharge mode microwave source.(a) Schematic of high voltage discharge mode; (b) schematic of USMP experimental device[74]
    Fig. 2. High voltage discharge mode microwave source.(a) Schematic of high voltage discharge mode; (b) schematic of USMP experimental device[74]
    Continuous modulation mode microwave source.(a) Schematic of continuous modulation mode; (b) schematic of experimental apparatus for observing TA effect and TAR effect induced by monopulse and multi-pulse microwave sources[90]
    Fig. 3. Continuous modulation mode microwave source.(a) Schematic of continuous modulation mode; (b) schematic of experimental apparatus for observing TA effect and TAR effect induced by monopulse and multi-pulse microwave sources[90]
    Experimental diagram of unit ring scanning endoscopy imaging system and resolution[118]
    Fig. 4. Experimental diagram of unit ring scanning endoscopy imaging system and resolution[118]
    Structure diagram and physical diagram of ring array acquisition system[77]
    Fig. 5. Structure diagram and physical diagram of ring array acquisition system[77]
    Multivariate data acquisition system. (a) MTAI system composed of concave array detectors; (b) flexible array detector[121]
    Fig. 6. Multivariate data acquisition system. (a) MTAI system composed of concave array detectors; (b) flexible array detector[121]
    FP thermoacoustic detector. (a) Structure of FP thermoacoustic detector[122]; (b) lateral resolution of FP thermoacoustic detector[123]; (c) axial resolution of FP thermoacoustic detector[123]
    Fig. 7. FP thermoacoustic detector. (a) Structure of FP thermoacoustic detector[122]; (b) lateral resolution of FP thermoacoustic detector[123]; (c) axial resolution of FP thermoacoustic detector[123]
    Image reconstruction process of thermoacoustic imaging
    Fig. 8. Image reconstruction process of thermoacoustic imaging
    Schematic of different imaging algorithms. (a) Schematic of BP algorithm; (b) schematic of HDCS-MTAI algorithm[124]; (c) schematic of 3D CS-MTAI algorithm[125]
    Fig. 9. Schematic of different imaging algorithms. (a) Schematic of BP algorithm; (b) schematic of HDCS-MTAI algorithm[124]; (c) schematic of 3D CS-MTAI algorithm[125]
    MTAI of mammary gland. (a) Schematic of a breast thermoacoustic scanner[26]; (b) thermoacoustic imaging of a series of coronal and sagittal sections of the female breast, arrows show a large lobulated enhanced mass[26]; (c) thermoacoustic imaging of the left breast and right breast of human[26]; (d) in vitro thermoacoustic imaging of tumor-bearing ewe breast[121]
    Fig. 10. MTAI of mammary gland. (a) Schematic of a breast thermoacoustic scanner[26]; (b) thermoacoustic imaging of a series of coronal and sagittal sections of the female breast, arrows show a large lobulated enhanced mass[26]; (c) thermoacoustic imaging of the left breast and right breast of human[26]; (d) in vitro thermoacoustic imaging of tumor-bearing ewe breast[121]
    MTAI technique for brain imaging of rats in vivo[129]. (a) Thermoacoustic imaging system of rat brain structure; (b) thermoacoustic imaging results of rat brain structure
    Fig. 11. MTAI technique for brain imaging of rats in vivo[129]. (a) Thermoacoustic imaging system of rat brain structure; (b) thermoacoustic imaging results of rat brain structure
    MTAI technique for cerebral hemorrhage imaging[130]. (a) MTAI imaging system for GMH in mice; (b)-(e) thermoacoustic imaging of GMH in mice; (f)-(i) histological sections of mouse brain; (k)-(n) MTAI images after injection of 5 μL blood into the left ventricle; (j) indication of the location of blood injection; (o) histological images of Fig.12 (j); (p) TA signal curve along the dotted line shown in Fig.12 (l)
    Fig. 12. MTAI technique for cerebral hemorrhage imaging[130]. (a) MTAI imaging system for GMH in mice; (b)-(e) thermoacoustic imaging of GMH in mice; (f)-(i) histological sections of mouse brain; (k)-(n) MTAI images after injection of 5 μL blood into the left ventricle; (j) indication of the location of blood injection; (o) histological images of Fig.12 (j); (p) TA signal curve along the dotted line shown in Fig.12 (l)
    MTAI system and microwave illumination methods[131]. (a) Schematic of the MTAI system; (b) pyramidal horn antenna; (c) parallel in-phase microwave illumination; (d) parallel anti-phase microwave illumination
    Fig. 13. MTAI system and microwave illumination methods[131]. (a) Schematic of the MTAI system; (b) pyramidal horn antenna; (c) parallel in-phase microwave illumination; (d) parallel anti-phase microwave illumination
    Thermoacoustic imaging of finger arthritis[116-117]
    Fig. 14. Thermoacoustic imaging of finger arthritis[116-117]
    Schematic of different thermoacoustic probes. (a) Schematic of anti-Gall-Fe3O4 nanoparticles to enhance MTAI in nude mouse model with pancreatic cancer[132]; (b) schematic of TA signal generation mechanism in BSA-GO nanoparticles[141]; (c) schematic of TA signal and shock wave generation mechanism in defect-rich TiN NPs[142]; (d) UHF-RF-acoustic contrast preparation and in vitro imaging[143]
    Fig. 15. Schematic of different thermoacoustic probes. (a) Schematic of anti-Gall-Fe3O4 nanoparticles to enhance MTAI in nude mouse model with pancreatic cancer[132]; (b) schematic of TA signal generation mechanism in BSA-GO nanoparticles[141]; (c) schematic of TA signal and shock wave generation mechanism in defect-rich TiN NPs[142]; (d) UHF-RF-acoustic contrast preparation and in vitro imaging[143]
    Research groupMain frequencyPulsed widthProducing modePeak power
    D. Xing

    434 MHz74-77

    1.2 GHz66-68

    3 GHz

    6 GHz69-73

    10 ns

    0.5 μs

    0.5 μs

    0.5 μs

    HD

    MM

    MM

    MM

    4-40 MW

    300 kW

    70 kW

    350 kW

    H. Jiang

    1.2 GHz

    3 GHz50-52

    0.5 μs

    0.75 μs

    MM

    MM

    300 kW

    350 kW

    L. V. Wang

    3 GHz

    9 GHz

    9.4 GHz

    0.5 μs

    0.5 μs

    0.6-2.2 μs

    MM

    MM

    MM

    2 kW

    25/10 kW

    10 kW

    R. A. Kruger434 MHz0.5 μs/1 msHD25 kW
    V. Ntziachristos~100 MHz10 nsHD~70 MW
    H. Xin

    2.7-3.1 GHz55

    3/1.4/2.5 GHz56-60

    400 ns

    0.5-1.5 μs

    MC

    MM

    5.2 kW

    4/10 kW

    S. K. Patch108 MHz44-45700 nsMM20 kW
    A. Arbabian2/2.1 GHz61-72NAMC120 W

    Y. Zheng

    X. Wang

    2.7/2.9/3.1 GHz63-65

    915 MHz/2.45 GHz

    NA

    0.1-10 μs

    MC

    MC

    NA

    20 kW

    Table 1. Microwave source types studied by each group
    Research groupeTypeShapeArray elementCenter frequencyResolution
    D. Xing

    Single-element68-71

    Multi-element83

    Multi-element77

    Multi-element80

    NA

    Linear

    Full ring

    Flexibility

    1

    128/64

    384/256

    64

    2.5/3.5 MHz

    2.5/2 MHz

    2.5/5 MHz

    7.5 MHz

    0.5 mm

    2.2 mm

    NA

    NA

    H. Jiang

    Single-element50-52

    Multi-element

    NA

    Linear

    1

    128

    2.25 MHz500 μm
    L. V. Wang

    Single-element

    Multi-element

    NA

    Linear

    1

    30

    1/3.5 MHz

    2.25 MHz

    1.5 mm

    1.9-2.5 mm

    R. A. KrugerMulti-elementNA641 MHz~1 mm
    V. NtziachristosSingle-elementNA17.5 MHz170 μm
    H. Xin

    Single-element55

    Multi-element56-60

    NA

    Linear

    1

    128

    1 MHz

    2.25 MHz

    500 μm

    mm order

    S. K. Patch

    Single-element44

    Multi-element45-46

    NA

    NA

    1

    96

    2.25 MHz

    1-4 MHz

    NA

    250 μm

    A. ArbabianSingle-element61-62NANA0.5 MHzNA
    Y. ZhengSingle-element63-65NA1NANA
    Table 2. Thermoacoustic sensor types studied by each group
    Shanxiang Zhang, Xiaoyu Tang, Huan Qin. Research Progress and Prospect of Microwave-Induced Thermoacoustic Imaging Technology[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617004
    Download Citation