• Infrared and Laser Engineering
  • Vol. 51, Issue 3, 20220106 (2022)
Hongyue Hao, Donghai Wu*, Yingqiang Xu, Guowei Wang, Dongwei Jiang, and Zhichuan Niu
Author Affiliations
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.3788/IRLA20220106 Cite this Article
    Hongyue Hao, Donghai Wu, Yingqiang Xu, Guowei Wang, Dongwei Jiang, Zhichuan Niu. Research progress of high performance Sb-based superlattice mid-wave infrared photodetector (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220106 Copy Citation Text show less
    References

    [1] Y Cai. Review and prospect of HgCdTe detectors. Infrared and Laser Engineering, 51, 20210988(2022).

    [2] J Si. Novel InSb-based infrared detector materials. Infrared and Laser Engineering, 51, 20210811(2022).

    [3] Y Lv, X Lu, Z X Lu. Review of Antimonide infrared detector development at home and abroad. Aero Weaponry, 27, l-12(2020).

    [4] Bürkle L, Fuchs F. InAs(GaIn)Sb superlattices: A promising material system f infrared detection[D].UK: Elsevier Science, 2002.

    [5] Y Aytac, B V Olson, J K Kim, et al. Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infrared InAs/InAsSb superlattices. Applied Physics Letters, 105, 022107(2014).

    [6] E H Steenbergen, B C Connelly, G D Metcalfe, et al. Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb. Applied Physics Letters, 99, 25110(2011).

    [7] B V Olson, E A Shaner, J K Kim, et al. Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice. Applied Physics Letters, 101, 092109(2012).

    [8] Z Y Lin, S Liu, E H Steenbergen, et al. Influence of carrier localization on minority carrier lifetime in InAs/InAsSb type-II superlattices. Applied Physics Letters, 107, 201107(2015).

    [9] D Alshahrani, M Kesaria, E Anyebe, . et al. Emerging type-II superlattices of InAs/InAsSb and InAs/GaSb for mid-wavelength infrared photodetectors. Advanced Photonics Research, 3, 2100094(2021).

    [10] D Z Ting, S B Rafol, A Khoshakhlagh, et al. InAs/InAsSb type-II strained-layer superlattice infrared photodetectors. Micromachines, 11, 958(2020).

    [11] Ting D Z, Khoshakhlagh A, Soibel A, et al. Barrier infrared detect: US, US8217480B2[P].20211007.

    [12] X M Shen, H Li, S Liu, et al. Study of InAs/InAsSb type-II superlattices using high-resolution x-ray diffraction and cross-sectional electron microscopy. Journal of Crystal Growth, 381, 1-5(2013).

    [13] J Lu, E Luna, T Aoki, et al. Evaluation of antimony segregation in InAs/InAs1− xSbx type-II superlattices grown by molecular beam epitaxy. Journal of Applied Physics, 119, 095702(2016).

    [14] J K Jiang, Y Li, F R Chang, et al. MBE growth of mid-wavelength infrared photodetectors based on high quality InAs/AlAs/InAsSb superlattice. Journal of Crystal Growth, 564, 126109(2021).

    [15] M Schowalter, A Rosenauer, D Gerthsen, et al. Investigation of in segregation in InAs/AlAs quantum-well structures. Applied Physics Letters, 79, 4426-4428(2001).

    [16] A Soibel, C J Hill, S A Keo, et al. Room temperature performance of mid-wavelength infrared nBn detectors. Applied Physics Letters, 105, 023512(2014).

    [17] L F She, J K Jiang, W Q Chen, et al. Mid-wave infrared p+-B-n InAs/InAsSb type-II superlattice photodetector with an AlAsSb/InAsSb superlattice barrier. Infrared Physics and Technology, 121, 104015(2022).

    [18] J C Tong, L Tobing, S P Qiu, et al. Room temperature plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector. Applied Physics Letters, 113, 011110(2018).

    [19] Peters D W, Reinke C M, Davids P S, et al. Nanoantennaenabled wave infrared focal plane arrays[C]Proceeding of SPIE, 2012, 8353: 83533.

    [20] Nolde J A, Jackson E M, Kim M, et al. Enhancement of quantum efficiency in nBn detects with thin absbers using plasmonic gratings[C]Proceeding of SPIE, 2019, 10926: 1092627.

    [21] Peters D W, Davids P S, Kim J K, et al. Plasmonic nanoantennas f enhanced wave longwave infrared imaging[C]Proceeding of SPIE, 2012, 9467: 946729.

    [22] D’Souza A I, Ionescu A C, Salcido M, et al. InAsSb detects f visible to MWIR high operating temperature applications[C]Proceeding of SPIE, 2011, 8012: 80122.

    [23] H Y Hao, G W Wang, X Han, et al. Extended-wavelength InGaAsSb infrared unipolar barrier detectors. AIP Advances, 8, 095106(2018).

    [24] C Y Guo, Y Y Sun, Q Jia, et al. Visible-extended mid-infrared wide spectrum detector based on InAs/GaSb type-Ⅱ superlattices. Infrared Physics and Technology, 89, 147-153(2018).

    [25] C Y Guo, Y Y Sun, Q Jia, et al. Wide spectrum responsivity detectors from visible to mid-infrared based on antimonide. Infrared Physics and Technology, 96, 1-6(2019).

    Hongyue Hao, Donghai Wu, Yingqiang Xu, Guowei Wang, Dongwei Jiang, Zhichuan Niu. Research progress of high performance Sb-based superlattice mid-wave infrared photodetector (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220106
    Download Citation