• Photonics Research
  • Vol. 10, Issue 2, 389 (2022)
Yunning Lu1、2, Zeyang Liao1、3、*, Fu-Li Li2, and Xue-Hua Wang1、4、*
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
  • 2Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
  • 3e-mail: liaozy7@mail.sysu.edu.cn
  • 4e-mail: wangxueh@mail.sysu.edu.cn
  • show less
    DOI: 10.1364/PRJ.443245 Cite this Article Set citation alerts
    Yunning Lu, Zeyang Liao, Fu-Li Li, Xue-Hua Wang. Integrable high-efficiency generation of three-photon entangled states by a single incident photon[J]. Photonics Research, 2022, 10(2): 389 Copy Citation Text show less

    Abstract

    Generation of multi-photon entangled states with high efficiency in integrated photonic quantum systems is still a big challenge. The usual three-photon generation efficiency based on the third-order nonlinear effect is extremely low. Here, we propose a scheme to generate three-photon correlated states, which are entangled states in frequency space and bound states in real space, with high efficiency. This method relies on two crucial processes. On one hand, by employing a Sagnac interferometer, an incident photon can be transformed into a symmetric superposition of the clockwise and counterclockwise modes of the Sagnac loop, which can then be perfectly absorbed by the emitter. On the other hand, the coupling strengths of the two transition paths of the emitter to the Sagnac loop are set to be equal, under which the absorbed photon can be emitted completely from the cascaded transition path due to quantum interference. By adjusting the coupling strengths among the three transition paths of the emitter and the waveguide modes, we can control the spectral entanglement and spatial separation among the three photons. Our proposal can be used to generate three-photon entangled states on demand, and the efficiency can be higher than 90% with some practical parameters, which can find important applications in integrated quantum information processing.
    H0=ω1|11|+ω2|22|+ω3|33|+ω4|44|+n=e,o  f=a,b,c,ddkωffnkfnk,

    View in Article

    HI(e)=dk[Δk(A)aekaek+Δk(B)bekbek+Δk(C)cekcek+Δk(D)dekdek]iγ2/2|22|iγ3/2|33|iγ4/2|44|+f=a,b,c,ddk2Vf(σf+fek+fekσf),

    View in Article

    |Ψ(i)(t)=dkAk(i)(t)aek|Ø,1,

    View in Article

    Ak(i)(t)=ϵAπ1Δk(A)δA+iϵA.

    View in Article

    |Ψ(i)(t)=duAu(i)(t)ae(u)|Ø,1,

    View in Article

    Au(i)(t)=i2ϵAexp[i(ωa+δAiϵA)(ctu)/c]θ(ctu).

    View in Article

    |Au(i)(t)|2=2ϵAexp[2ϵA(ctu)/c]θ(ctu).

    View in Article

    |Ψ(f)(t)=dkAk(f)(t)aek|Ø,1+dpBp(f)(t)bep|Ø,3+dpdqCpq(f)(t)bepceq|Ø,2+dpdqdrDpqr(f)(t)bepceqder|Ø,1+E(f)(t)|Ø,4,

    View in Article

    Ak(f)(t)=ϵAπeiΔk(A)tΔk(A)δA+iϵA×Δk(A)+iγ4/2iΓA/2+iΓB/2Δk(A)+iΓ4/2,(9a)

    View in Article

    Dpqr(f)(t)=i2πϵAΓAΓBΓCΓDπeiΔpqr(BCD)t×1Δpqr(BCD)δA+iϵA1Δpqr(BCD)+iΓ4/2×1Δqr(CD)+iΓ3/21Δr(D)+iΓ2/2,(9b)

    View in Article

    |Ψ(f)(t)S=duAu(f)(t)ae(u)|Ø,1+dxdydzDxyz(f)(t)be(x)ce(y)de(z)|Ø,1,

    View in Article

    Au(f)(t)=i2ϵAθ(ctu)×exp[i(ωa+δAiϵA)(ctu)/c]+i2ϵAexp[iωa(ctu)/c]θ(ctu)×{exp[(ϵA+iδA)(ctu)/c]exp[(Γ4/2)(ctu)/c]}×ΓA/(Γ4/2ϵAiδA),(11a)

    View in Article

    Dxyz(f)(t)=2ϵAΓAΓBΓCΓD×θ(ctx)θ(xy)θ(yz)×exp[iωb(ctx)/c]×exp[iωc(cty)/c]×exp[iωd(ctz)/c]×{exp[(ϵA+iδA)(ctx)/c]exp[(Γ4/2)(ctx)/c]}×[1/(δAiϵA+iΓ4/2)]×exp[(Γ3/2)(xy)/c]×exp[(Γ2/2)(yz)/c](11b)

    View in Article

    |ϕBCD(f)=dpdqdrDpqr(f)(t)PBCDbepceqder|Ø,1,

    View in Article

    |ϕBCD(f)=nλn(1)|ϕB|ϕCD,

    View in Article

    |ϕBCD(f)=nλn(2)|ϕBC|ϕD,

    View in Article

    S1=nλn(1)log2λn(1),

    View in Article

    S2=nλn(2)log2λn(2),

    View in Article

    K1=1nλn(1)2,

    View in Article

    K2=1nλn(2)2.

    View in Article

    |Ψ(t)=dkAk(t)aek|Ø,1+dpBp(t)bep|Ø,3+dpdqCpq(t)bepceq|Ø,2+dpdqdrDpqr(t)bepceqder|Ø,1+E(t)|Ø,4,(A1)

    View in Article

    it|Ψ(t)=HI(e)|Ψ(t),(A2)

    View in Article

    itAk(t)=Δk(A)Ak(t)+2VaE(t),(A3a)

    View in Article

    itBp(t)=[Δp(B)iγ3/2]Bp(t)+dq2VcCpq(t)+2VbE(t),(A3b)

    View in Article

    itCpq(t)=2VcBp(t)+[Δp(B)+Δq(C)iγ2/2]Cpq(t)+dr2VdDpqr(t),(A3c)

    View in Article

    itDpqr(t)=2VdCpq(t)+[Δp(B)+Δq(C)+Δr(D)]Dpqr(t),(A3d)

    View in Article

    itE(t)=dk2VaAk(t)+dp2VbBp(t)iγ4/2E(t).(A3e)

    View in Article

    isA˜k(s)=Δk(A)A˜k(s)+2VaE˜(s)+iAk(0),(A4a)

    View in Article

    isB˜p(s)=[Δp(B)iγ3/2]B˜p(s)+dq2VcC˜pq(s)+2VbE˜(s),(A4b)

    View in Article

    isC˜pq(s)=2VcB˜p(s)+[Δp(B)+Δq(C)iγ2/2]C˜pq(s)+dr2VdD˜pqr(s),(A4c)

    View in Article

    isD˜pqr(s)=2VdC˜pq(s)+[Δp(B)+Δq(C)+Δr(D)]D˜pqr(s),(A4d)

    View in Article

    isE˜(s)=dk2VaA˜k(s)+dp2VbB˜p(s)iγ4/2E˜(s).(A4e)

    View in Article

    A˜k(s)=iΓAϵAπ1s+iΔk(A)1s+ϵA+iδA×1s+γ4/2+ΓA/2+ΓB/2+ϵAπ1s+iΔk(A)1Δk(A)δA+iϵA,(A5a)

    View in Article

    B˜p(s)=iϵAΓAΓBπ1s+ϵA+iδA1s+γ4/2+ΓA/2+ΓB/2×1s+ΓC/2+iΔp(B)+γ3/2,(A5b)

    View in Article

    C˜pq(s)=1πϵAΓAΓBΓC21s+γ4/2+ΓA/2+ΓB/2×1s+ϵA+iδA1s+ΓC/2+iΔp(B)+γ3/2×1s+ΓD/2+iΔp(B)+iΔq(C)+γ2/2,(A5c)

    View in Article

    D˜pqr(s)=i2πϵAΓAΓBΓCΓDπ1s+γ4/2+ΓA/2+ΓB/2×1s+ϵA+iδA1s+ΓC/2+iΔp(B)+γ3/2×1s+ΓD/2+iΔp(B)+iΔq(C)+γ2/2×1s+iΔp(B)+iΔq(C)+iΔr(D),(A5d)

    View in Article

    E˜(s)=2ϵAΓAs+ϵA+iδA1s+γ4/2+ΓA/2+ΓB/2.(A5e)

    View in Article

    |Ψ(f)(t)S=eiH0t|Ψ(f)(t)=dkAk(f)(t)eiωataek|Ø,1+dpdqdrDpqr(f)(t)×eiωbteiωcteiωdtbepceqder|Ø,1.(B1)

    View in Article

    aek=duae(u)eiku2π,(B2a)

    View in Article

    bep=dxbe(x)eipx2π,(B2b)

    View in Article

    ceq=dyce(y)eiqy2π,(B2c)

    View in Article

    der=dzde(z)eirz2π,(B2d)

    View in Article

    ρB=TrCD(|ϕBCD(f)ϕBCD(f)|)=dΔq(C)dΔr(D)Ø,1|ceqder|ϕBCD(f)ϕBCD(f)|ceqder|Ø,1=dΔp(B)dΔp(B)ρB(p,p)bep|Ø,1Ø,1|bep,(C1)

    View in Article

    ρB(p,p)=dΔq(C)dΔr(D)1PBCDDpqrDpqr*=1PBCDϵAΓAΓBΓCΓDπeiΔpteiΔpt×(1ΔpΔp+2iϵA1ΔpΔp+iΓ4/2+δA+iϵA×1iΓ4/2+δA+iϵA1Δp+iΓ3/2+δA+iϵA×1ΔpiΓ3/2+δA+iϵA1iΓ2+1ΔpΔpδA+iϵA+iΓ4/21δAiϵA+iΓ4/2×1ΔpΔp+2iΓ4/21Δp+iΓ3/2+iΓ4/2×1ΔpiΓ3/2+iΓ4/21iΓ2+1ΔpδA+iϵA+iΓ3/21ΔpδAiϵA+iΓ3/2×1Δp+iΓ4/2+iΓ3/21ΔpiΓ4/2+iΓ3/2×12iΓ3/212iΓ2/2).(C2)

    View in Article

    ρD=TrBC(|ϕBCD(f)ϕBCD(f)|)=dΔp(B)dΔq(C)Ø,1|bepceq|ϕBCD(f)ϕBCD(f)|bepceq|Ø,1=dΔr(D)dΔr(D)ρD(r,r)der|Ø,1Ø,1|der,(C3)

    View in Article

    ρD(r,r)=dΔp(B)dΔq(C)1PBCDDpqrDpqr*=1PBCD14π2ϵAΓAΓBΓCΓDπeiΔrteiΔrt(2iπ)2×(1ΔrΔr+2iϵA1ΔrΔr+δA+iϵA+iΓ4/2×1δA+iϵAiΓ4/2+1ΔrΔr+iΓ4/2δA+iϵA×1iΓ4/2δAiϵA1ΔrΔr+2iΓ4/2)×1ΔrΔr+2iΓ3/21Δr+iΓ2/21ΔriΓ2/2.(C4)

    View in Article

    PA=+dk|Ak(f)(t)|2=ΓA/2ΓB/2γ4/2+ϵAiδAΓA/2+ΓB/2+γ4/2+ϵAiδA×ΓA/2ΓB/2γ4/2ϵA+iδAΓA/2+ΓB/2+γ4/2ϵA+iδA+2ϵAΓA+ΓB+γ4ΓAΓA/2+ΓB/2+γ4/2+ϵA+iδA×ΓB+γ4ΓA/2+ΓB/2+γ4/2ϵA+iδA,(D1)

    View in Article

    PBCD=dpdqdr|Dpqr(f)(t)|2=(ΓAΓA/2+ΓB/2+γ4/2+ϵAiδA×ΓBΓA/2+ΓB/2+γ4/2ϵA+iδA2ϵAΓA+ΓB+γ4ΓAΓA/2+ΓB/2+γ4/2+ϵA+iδA×ΓBΓA/2+ΓB/2+γ4/2ϵA+iδA)×ΓCΓC+γ3ΓDΓD+γ2,(D2)

    View in Article

    PDis=1PAPBCD.(D3)

    View in Article

    Yunning Lu, Zeyang Liao, Fu-Li Li, Xue-Hua Wang. Integrable high-efficiency generation of three-photon entangled states by a single incident photon[J]. Photonics Research, 2022, 10(2): 389
    Download Citation