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Generation of multi-photon entangled states with high efficiency in integrated photonic quantum systems is still a
big challenge. The usual three-photon generation efficiency based on the third-order nonlinear effect is extremely
low. Here, we propose a scheme to generate three-photon correlated states, which are entangled states in fre-
quency space and bound states in real space, with high efficiency. This method relies on two crucial processes.
On one hand, by employing a Sagnac interferometer, an incident photon can be transformed into a symmetric
superposition of the clockwise and counterclockwise modes of the Sagnac loop, which can then be perfectly ab-
sorbed by the emitter. On the other hand, the coupling strengths of the two transition paths of the emitter to the
Sagnac loop are set to be equal, under which the absorbed photon can be emitted completely from the cascaded
transition path due to quantum interference. By adjusting the coupling strengths among the three transition paths
of the emitter and the waveguide modes, we can control the spectral entanglement and spatial separation among
the three photons. Our proposal can be used to generate three-photon entangled states on demand, and the
efficiency can be higher than 90% with some practical parameters, which can find important applications in
integrated quantum information processing. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.443245

1. INTRODUCTION

Quantum entanglement, “spooky action at a distance,” is one of
the most intriguing phenomena in quantum mechanics. The
generation of entangled photon states plays a crucial role in
quantum information, quantum computation, and quantum
metrology [1–7]. Two-photon entangled states, the simplest
multi-photon entangled states, can be prepared based on sec-
ond-order parametric downconversion in nonlinear media
[8–15], but the generation efficiency is usually very low. For
example, in beta-barium borate crystals, only one in every 1012

pumped photons can be transformed into a two-photon state.
The efficiency can be significantly improved by embedding
semiconductor quantum dots in broadband photonic nano-
structures [16], and the quantum states of a single photon
can be on-demand controlled [17,18]. In comparison to the
two-photon entangled pair, the efficiency to generate three-
photon entangled states is even lower because the third-
order nonlinear coefficient χ�3� is usually extremely small,
typically ranging from 10−21 m2∕V2 to 10−19 m2∕V2 [19].

For example, for the type-I process in TiO2, the effective cubic
susceptibility is χ�3� � 2.1 × 10−20 m2∕V2. When a TiO2 crys-
tal with a length of 5 mm is pumped by a continuous wave with
power 100 mW (about 1017 photons per second), only a few
three-photon states can be obtained per hour [20]. Generation
of three-photon entangled states with high efficiency is still a
big challenge.

In addition to efficiency, integrability is another important
property to be considered. Quantum advantages have been
demonstrated in several experiments [21–23]. The next ambi-
tion is to build a scalable error-correctable quantum informa-
tion device in an integrated chip [24]. The usual way to
produce multi-photon entangled states based on nonlinear
crystals is difficult to be integrated into a chip. In recent years,
waveguide–quantum electrodynamics (waveguide-QED) sys-
tems have been demonstrated as a promising platform to build
a scalable and integrable quantum network [25–30], which has
been realized in several different physical systems such as
quantum dots coupled with metallic nanowires [31,32], super-
conducting qubits coupled with one-dimensional (1D) open
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transmission lines [33–40], trapped atoms coupled with pho-
tonic crystal waveguides [41–46], and trapped cold atoms
coupled with 1D nanofibers [47–49]. Several schemes have
been proposed to generate photon–photon correlation in the
waveguide-QED system. When two or more independently
propagating guided photons are scattered by an emitter, bound
states of photons can be generated [50–54]. When two distin-
guishable guided photons interact with the two different tran-
sition paths of a Ξ-type three-level emitter, the two output
photons can be entangled in frequency space [55]. However,
in the above works, multiple photons need to be incident,
and the probability that the photons become entangled is usu-
ally less than 50% because the incident photons are unidirec-
tional, which can be decomposed as an equal superposition of
symmetric and antisymmetric modes, and only the symmetric
mode can interact with the emitter. In addition, in these
schemes, not all of the absorbed photons become correlated
after scattering. Bradford et al. proposed a method for highly
efficient single-photon frequency conversion using a Sagnac
interferometer [56], and it was generalized to generate two en-
tangled photons with high efficiency [57]. However, in that
scheme, they used a Δ−type emitter, which cannot be realized
in the usual quantum system due to the forbidden selection rule
of electric dipole transition.

Here, we propose a scheme to deterministically generate
three-photon entangled states by an incident single photon
in an integrated waveguide-QED system. We employ a
Sagnac interferometer, which is a waveguide loop coupled to
two 1D line waveguides via a 50/50 beam splitter (BS), and
an incident photon from a line waveguide can be transformed
into a symmetric superposition of the clockwise and counter-
clockwise modes of the waveguide loop, which can then be
completely absorbed by a four-level emitter coupled to the
waveguide loop. When the coupling strengths of two transition
paths of the emitter are equal, the absorbed photon energy can
be emitted completely from the cascaded pathway due to the
complete destructive interference between the directly trans-
mitted photon amplitude and the absorbed, re-emitted photon

amplitude. After scattering, the single incident photon can be
transferred to three lower-frequency photons that are entangled
in frequency and bound together in real space. By manipulating
the coupling strengths among the three transition paths of the
emitter and the waveguide modes, we can control the spectral
entanglement and spatial binding among the three photons. In
our proposal, the output time of the three-photon state is de-
termined by the input time of the initial photon and thus can
be generated on demand. Even if considering the effect of some
nonideal factors, such as emitter dissipation and off-resonance
components in the input photon pulse, the success probability
of generating the three-photon state can still be more
than 90%.

This paper is arranged as follows. In Section 2, we introduce
the model of our system. In Section 3, we calculate the three-
photon state generated in our system, and discuss its spectral
entanglement and spatial binding. In Section 4, we summarize
our results.

2. MODEL AND HAMILTONIAN

The model we consider is shown in Fig. 1(a). A Sagnac inter-
ferometer [58] is a waveguide loop coupled to two external lin-
ear waveguides via a 50/50 BS. The BS has four ports, i.e., 1, 2,
3, and 4. Ports 1 and 2 are connected to the external wave-
guides, and ports 3 and 4 are connected to the waveguide loop.
When a photon enters the waveguide loop from port 1 (2), it
will become the symmetric (antisymmetric) superposition of
the clockwise and counterclockwise modes of the loop.
Conversely, a photon in the symmetric (antisymmetric) super-
position of the clockwise and counterclockwise modes of the
waveguide loop will leave the system from port 1 (2). A quan-
tum emitter is strongly coupled to the waveguide loop at a po-
sition that is symmetrical with respect to the 50/50 BS, i.e., the
position of the emitter has an equal optical path length to ports
3 and 4. Thus, the emitter is at an antinode of the symmetric
mode photon, and at a node of the antisymmetric mode pho-
ton. The emitter can interact with the symmetric mode photon,

Fig. 1. Schematic of the system. (a) A Sagnac interferometer is a waveguide loop coupled to two external linear waveguides via a 50/50 beam
splitter BS. An emitter is coupled to the waveguide loop. An optical circulator OC is used to distinguish the input and output photons. (b) Energy
levels of the quantum emitter. Photons A, B, C, D are coupled to four transition paths of the emitter.
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and cannot interact with the antisymmetric mode photon.
Here, the necessity of the use of the Sagnec interferometer
should be emphasized. The Sagnac interferometer can trans-
form a unidirectional photon into a symmetric superposition
of the clockwise and counterclockwise modes of the waveguide
loop. The symmetric-mode photon can interact with the emit-
ter with a probability of 100%, and the probability of paramet-
ric downconversion may approach 100%. If we do not use a
Sagnac interferometer, a unidirectional incident photon should
be regarded as an equal superposition of symmetric and anti-
symmetric modes, and only the symmetric mode can interact
with the emitter. The photon can be absorbed by the emitter
with at most 50% probability, and therefore the probability of
parametric downconversion is at most 50%. The Sagnac inter-
ferometer improves the probability significantly. On the left
side of the system, an optical circulator (OC) is used to distin-
guish the input and output paths. The OC is a nonreciprocal
optical device, and it allows photons to propagate along a spe-
cial direction, but forbids photons to propagate along the op-
posite direction. For example, it is theoretically proposed
[59,60] and experimentally demonstrated [61,62] that an OC
can be a system in which a quantum emitter is chirally coupled
to a whispering-gallery-mode microresonator, and the micro-
resonator is coupled to two waveguides. The three ports of
the two waveguides are the input and output ports of the
OC. We assume that the waveguide loop in our model can
support a continuum of photonic modes, and has an approxi-
mated linear dispersion relation ω � ck around the resonance
transition frequency of the emitter.

The quantum emitter is assumed to be a four-level system
with energy levels shown in Fig. 1(b). The four energy states are
denoted as j1i, j2i, j3i, and j4i, with energies ω1, ω2, ω3, and
ω4, respectively. Here, we have set ℏ � 1 throughout this pa-
per. We assume that the ground state j1i is a stable state, and
the other three states can dissipate energy into free space at rates
γ2, γ3, and γ4. An alkali atom such as rubidium is a possible
candidate for the quantum emitter [63]. For example, the tran-
sition among the four energy levels j1i → j4i → j3i →
j2i → j1i can be 5S → 6P → 6S → 5P → 5S. Four waveguide
photon modes with different frequencies denoted as A, B, C,
and D can be coupled to the four transition paths of the emit-
ter, and their detunings are denoted as Δ�A�

k , Δ�B�
p , Δ�C�

q , and
Δ�D�

r , respectively.
We define an unperturbed Hamiltonian of the system:

H 0 � ω1j1ih1j � ω2j2ih2j � ω3j3ih3j � ω4j4ih4j

�
X
n�e, o

X
f �a, b, c, d

Z
dkωf f

†
nkf nk, (1)

where ωa � ω4 − ω1, ωb � ω4 − ω3, ωc � ω3 − ω2, and
ωd � ω2 − ω1 are the frequency spacings of the emitter
energy levels. In the interaction picture, with respect to H 0,
the effective Hamiltonian of the system can be written as
H I � H �e�

I �H �o�
I . Here, H �e�

I includes the energy of the
even-mode photons, the effective Hamiltonian of the emitter
including the dissipations, and their interaction:

H �e�
I �

Z
dk
h
Δ�A�

k a†ekaek � Δ�B�
k b†ekbek

� Δ�C�
k c†ekcek � Δ�D�

k d †
ekd ek

i

− iγ2∕2j2ih2j − iγ3∕2j3ih3j − iγ4∕2j4ih4j

�
X

f �a, b, c, d

Z
dk

ffiffiffi
2

p
V f �σ�f f ek � f †

ekσ
−
f �, (2)

where σ�a � j4ih1j, σ�b � j4ih3j, σ�c � j3ih2j, and
σ�d � j2ih1j are raising operators of the emitter, and σ−f is the

Hermitian of σ�f (f � a, b, c, d). H �o�
I � R

dk�Δ�A�
k a†okaok�

Δ�B�
k b†okbok � Δ�C�

k c†okcok � Δ�D�
k d †

okd ok � is the Hamiltonian
of the odd-mode photons.

In the Hamiltonian, V a, V b, V c, and V d are the coupling
strengths between photons A, B, C, D and the corresponding
transitions of the emitter, respectively. a†ek (aek), b

†
ek (bek), c

†
ek

(cek), and d †
ek (d ek) are the creation (annihilation) operators

of the even modes of photons A, B, C, and D, with wave
vector k, respectively. They are defined as the symmetric super-
position of the creation (annihilation) operators of the clock-
wise- and counterclockwise-propagation photon modes f †

ek �
�f †

cw,k � f †
ccw,k�∕

ffiffiffi
2

p
, f ek � �f cw,k � f ccw,k�∕

ffiffiffi
2

p
, with

f � a, b, c, d. Likely, a†ok (aok), b
†
ok (bok), c

†
ok (cok), and d †

ok
(d ok) are the creation (annihilation) operators of the odd
modes of photons A, B, C, and D, with wave vector k, respec-
tively. They are defined as the antisymmetric superposition
of the creation (annihilation) operators of the clockwise- and
counter clockwise-propagation photon modes f †

ok �
�f †

cw,k − f
†
ccw,k�∕

ffiffiffi
2

p
, f ok � �f cw,k − f ccw,k�

ffiffiffi
2

p
, with f �

a, b, c, d. It is clearly seen that only even-mode photons interact
with the emitter, and odd-mode photons do not interact with
the emitter. The even-mode Hamiltonian (2) is used for calcu-
lations in the following section.

3. GENERATION OF THREE-PHOTON
CORRELATED STATES

In this section, we consider the scattering properties of a single
photon wave packet by a four-level emitter coupled to a wave-
guide loop. We first derive a general analytical expression for
the output states in the first subsection. Then we analyze the
real space properties of the output state. In the third subsection,
we study the spectral entanglement properties of the output
three-photon state.

A. General Dynamics of the System
The quantum emitter is assumed to be in state j1i initially. A
single photon pulse denoted as Awith frequency near resonance
to the transition j1i → j4i is incident from port “Input.”
This photon then passes through the 50/50 BS and enters
the waveguide loop. Since this photon enters the waveguide
loop from port 1, it is in a symmetric superposition of the
clockwise and counter-clockwise propagating modes in the
waveguide loop.

Before scattering, photon A is given by

jΨ�i��t�i �
Z

dkA�i�
k �t�a†ekj∅, 1i, (3)
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where Ak�0� is its amplitude in momentum space with wave
vector k. For perfect excitation, the photon is assumed to have
a Lorentzian spectrum given by

A�i�
k �t� �

ffiffiffiffiffi
ϵA
π

r
1

Δ�A�
k − δA � iϵA

: (4)

Here, Δ�A�
k is the detuning between the k component of

photon A and the emitter transition j1i → j4i. δA is the de-
tuning between the peak frequency of photon A and the fre-
quency of the emitter transition j1i → j4i. ϵA is the spectral
width of photon A. In real space, the state of photon A is

jΨ�i��t�i �
Z

duA�i�
u �t�a†e �u�j∅, 1i, (5)

where

A�i�
u �t� � −i

ffiffiffiffiffiffiffi
2ϵA

p
exp�−i�ωa � δA − iϵA��ct − u�∕c�θ�ct − u�:

(6)

The corresponding probability density is given by

jA�i�
u �t�j2 � 2ϵA exp�−2ϵA�ct − u�∕c�θ�ct − u�: (7)

When the scattering is finished (i.e., t ≫ 1∕ϵA, 1∕ΓA,
1∕ΓB, 1∕ΓC, 1∕ΓD), the state of the system is

jΨ�f ��t�i �
Z

dkA�f �
k �t�a†ekj∅, 1i �

Z
dpB�f �

p �t�b†epj∅, 3i

�
Z

dp
Z

dqC �f �
pq �t�b†epc†eqj∅, 2i

�
Z

dp
Z

dq
Z

drD�f �
pqr�t�b†epc†eqd †

er j∅, 1i

� E �f ��t�j∅, 4i, (8)

where

A�f �
k �t� �

ffiffiffiffiffi
ϵA
π

r
e−iΔ

�A�
k t

Δ�A�
k − δA � iϵA

×
Δ�A�

k � iγ4∕2 − iΓA∕2� iΓB∕2
Δ�A�

k � iΓ4∕2
, (9a)

D�f �
pqr�t� � −

i
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵAΓAΓBΓCΓD

π

r
e−iΔ

�BCD�
pqr t

×
1

Δ�BCD�
pqr − δA � iϵA

1

Δ�BCD�
pqr � iΓ4∕2

×
1

Δ�CD�
qr � iΓ3∕2

1

Δ�D�
r � iΓ2∕2

, (9b)

and B�f �
p �t� � C �f �

pq �t� � E �f ��t� � 0. Here, Δ�BCD�
pqr �

Δ�B�
p � Δ�C�

q � Δ�D�
r , and Δ�CD�

qr � Δ�C�
q � Δ�D�

r . Γ4 �
γ4 � ΓA � ΓB, Γ3 � γ3 � ΓC, and Γ2 � γ2 � ΓD are the total
emission rate of emitter energy levels j4i, j3i, and j2i,
respectively. ΓA � 4πV 2

a , ΓB � 4πV 2
b, ΓC � 4πV 2

c , and
ΓD � 4πV 2

d are spontaneous emission rates from the emitter
to the waveguide modes through transition paths j4i → j1i,
j4i → j3i, j3i → j2i, and j2i → j1i, respectively. A�f �

k �t� is

the residual amplitude of photon A after scattering. D�f �
pqr�t�

is the amplitude of the generated three-photon state. B�f �
p �t�,

C �f �
pq �t�, and E �f ��t� are zero because the emitter cannot stay

in excited state j4i, j3i, or j2i after scattering. This is the main
result in this subsection. The derivation of state [Eq. (8)] is
shown in Appendix A.

Equation (9a) is the amplitude of photon A A�f �
k �t� after

scattering. It results from the coherent superposition of two
parts. The first part is the initial amplitude of the incident pho-
ton. The second part is the emission amplitude from the tran-
sition j4i → j1i during scattering. In Eq. (9a), it is shown that
in an ideal situation (monochromatic wave with no detuning
Δ�A�

k � 0 and absence of dissipation γ4 � 0), when condition
ΓA � ΓB is satisfied, we have A

�f �
k �t� � 0, which indicates that

incident photon A can be absorbed completely. An intuitive
and physical explanation is that when the emitter is pumped
from ground state j1i into excited state j4i by incident photon
A with a certain probability, under the condition ΓA � ΓB, the
emitter may emit the amplitude of photon A through transition
j4i → j1i and the amplitude of photon B through transition
j4i → j3i with equal probability. The amplitude of photon A
emitted through transition j4i → j1i and the initial amplitude
of incident photon A are equal in modulus and opposite in
phase, and interfere completely destructively. As a result, pho-
ton A is absorbed completely. At the same time, photon B is
generated with probability 100% through transition j4i → j3i
of the emitter. Then photons C and D are generated through
transitions j3i → j2i and j2i → j1i successively. Thus, inci-
dent photon A is absorbed and three photons B, C, and D
are generated with probability 100% in an ideal situation.
In Fig. 2(a), according to Eqs. (4) and (9a), we show the
frequency-space probability density of photon A before
(jA�i�

k j2) and after (jA�f �
k �t�j2) scattering. Indeed, with some

practical parameters, the resonant frequency component is
completely absorbed, and the whole photon A with a finite
spectrum width can be almost entirely absorbed [64,65].

B. Three-Photon Bound State in Real Space
We consider the spatial properties of the three-photon state
generated in our scheme. We transform the photon state
[Eq. (8)] in wave vector space into real space:

jΨ�f ��t�iS �
Z

duA�f �
u �t�a†e �u�j∅, 1i

�
Z

dx
Z

dy
Z

dzD�f �
xyz�t�b†e �x�c†e �y�d †

e �z�j∅, 1i,

(10)

where

A�f �
u �t� � −i

ffiffiffiffiffiffiffi
2ϵA

p
θ�ct − u�

× exp�−i�ωa � δA − iϵA��ct − u�∕c�
� i

ffiffiffiffiffiffiffi
2ϵA

p
exp�−iωa�ct − u�∕c�θ�ct − u�

× fexp�−�ϵA � iδA��ct − u�∕c�
− exp�−�Γ4∕2��ct − u�∕c�g × ΓA∕�Γ4∕2 − ϵA − iδA�,

(11a)
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D�f �
xyz�t� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵAΓAΓBΓCΓD

p
× θ�ct − x�θ�x − y�θ�y − z�

× exp�−iωb�ct − x�∕c� × exp�−iωc�ct − y�∕c�
× exp�−iωd�ct − z�∕c�
× fexp�−�ϵA � iδA��ct − x�∕c�
− exp�−�Γ4∕2��ct − x�∕c�g
× �1∕�δA − iϵA � iΓ4∕2�� × exp�−�Γ3∕2��x − y�∕c�
× exp�−�Γ2∕2��y − z�∕c�

(11b)

are the real-space wave functions of photon A and generated B,
C, D three-photon state. The derivation of Eq. (10) is shown in
Appendix B.

In Fig. 2(b), we plot the real-space probability densities of
photon A before and after scattering according to Eqs. (7) and
(11a), respectively. The area under the curve jA�f �

u �t�j2 is much
smaller than the area under the curve jA�i�

u j2, which indicates

that photon A is absorbed by the emitter with a high proba-
bility after scattering.

In Fig. 3(a), we plot the real-space joint probability densities
jD�f �

xyz�t�j2 of B, C, D three-photon states as functions of the
separation x − y between photons B and C, and the separation
y − z between photons C and D, according to Eq. (11b). We
find jD�f �

xyz�t�j2 takes the maximum value when x − y � 0 and
y − z � 0, and decreases to zero with the increasing of x − y and
y − z. Thus, photons B, C, and D are in bound state in real
space. In fact, when ΓC takes a bigger value, jD�f �

xyz�t�j2 de-
creases faster with the increasing of variable x − y, and therefore
photons B and C are more inclined to stay together. Similarly,
when ΓD takes a bigger value, photons C and D are more likely
to stay together. When both ΓC and ΓD are large, all three pho-
tons stay together with smaller separations. From the above dis-
cussion, it is clearly shown that a three-photon bound state is
generated. The red dashed curve (blue dashed curve) shows that
jD�f �

xyz�t�j2 decreases exponentially with the increasing of the
separation x − y of photons B and C (separation y − z of
photons C and D) when y − z � 0 (x − y � 0). Here,
Γ3 � ΓC � γ3, and Γ2 � ΓD � γ2.

(a)

(b)

Fig. 2. (a) Frequency-space probability densities of photon A before
and after scattering, jA�i�

k �t�j2 and jA�f �
k �t�j2. The inset figure is the

enlarged detail of the area around jA�i�
k �t�j2 � 0 and jA�f �

k �t�j2 � 0.
(b) Real-space probability densities of photon A before and after
scattering, jA�i�

u �t�j2 and jA�f �
u �t�j2. The parameters are ΓA � ΓB �

ΓC � ΓD, γ4 � 0.02ΓA , δA � 0, ϵA � 0.05ΓA.

-25 -20 -15 -10 -5 0
(w/c-t)

A

0

0.01
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P

B
(t)/(

A
c2)

P
C

(t)/(
A
c2)

P
D

(t)/(
A
c2)

(b)

(a)

Fig. 3. (a) Real-space joint probability density jD�f �
xyz�t�j2 of B, C, D

three-photon state. The parameter is �x − ct�ΓA∕c � −2. (b) Real-
space probability density of photons B, C, and D by integrating
jD�f �

xyz�t�j2 over the position of photons C, D (B, D, or B, C). In both
figures, other parameters are ΓB � ΓA , ΓC � 1.2ΓA , ΓD � 0.5ΓA ,
γ2 � γ3 � γ4 � 0.02ΓA, δA � 0, ϵA � 0.05ΓA.
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After integrating jD�f �
xyz�t�j2 over the position of photons C,

D (photons B, D, or photons B, C), we show the real-space
probability densities of photons B, C, and D in Fig. 3(b).
We can see that photons B, C, and D propagate in 1D space,
and appear successively in position w with increasing of time t .
This is because the three photons were emitted successively
through the cascaded transition path j4i → j3i → j2i → j1i.
In all three photon packets, the probability densities first in-
crease rapidly, and then decrease nearly exponentially. The rea-
son is that the initial incident photon is a packet decreasing
exponentially, and when the head of the incident photon arrives
and begins to excite the emitter, the population in excited states
j4i, j3i, and j2i increases from zero to their maximum values
rapidly, and then decreases nearly exponentially.

C. Three-Photon Entangled State in Frequency
Space
In this subsection, we analyze the correlation properties of the
generated three-photon state in frequency space. In Fig. 4, ac-
cording to Eq. (9b), we show the frequency-space joint prob-
ability densities jD�f �

pqr�t�j2 of B, C, D three-photon state, as

functions of detunings Δ�B�
p , Δ�C�

q , and Δ�D�
r , with different in-

cident photon A spectral widths ϵA. Since it is difficult to show
the total three-dimensional frequency space in a two-dimen-
sional plane, here, we choose the three cross sections to present
the quantum correlation of the generated three-photon state,
i.e., Δ�D�

r � 0, Δ�C�
q � 0, and Δ�B�

p � 0. In Fig. 4(a), we have
ϵA � 0.05ΓA, and in Fig. 4(b), we have ϵA � 0.1ΓA. It is
clearly seen from Fig. 4 that jD�f �

pqr�t�j2 are mainly distributed

along the lines Δ�B�
p � Δ�C�

q � 0, Δ�B�
p � Δ�D�

r � 0, and
Δ�C�

q � Δ�D�
r � 0. In fact, in the three-dimensional frequency

space, jD�f �
pqr�t�j2 are mainly distributed around the area

Δ�B�
p � Δ�C�

q � Δ�D�
r � 0. This indicates that the frequencies

of photons B, C, and D are entangled. This is because the total
energy of photons B, C, and D should be equal to the energy of
initial photon A, if the dissipations are not serious
(γ2, γ3, γ4 ≪ ΓA, ΓB,ΓC, ΓD). The energy conservation leads
to the frequency entanglement of photons B, C, and D.
Furthermore, by comparing Figs. 4(a) and 4(b), we can see that
a narrower spectral width ϵA of incident photon A leads to thin-
ner lines of jD�f �

pqr�t�j2, and therefore a stronger frequency en-
tanglement among the three photons.

To quantify the entanglement of the generated three-
photon state, we first normalize the three-photon state as

jϕ�f �
BCDi �

Z
dp

Z
dq

Z
dr

D�f �
pqr�t�ffiffiffiffiffiffiffiffiffiffiffi
PBCD

p b†epc†eqd †
er j∅, 1i, (12)

where PBCD is the probability of generating the three-photon
state. Then we decompose the three-photon state as two parts,
and calculate the degree of entanglement between them. Here,
we consider two different decompositions. In the first situation,
photon B is treated as one part, and photons C and D are
treated as the other part. In the second situation, photons B
and C are one part, and photon D is the other part. For these
two situations, we perform two kinds of Schmidt decomposi-
tions for the three-photon state as

jϕ�f �
BCDi �

X
n

ffiffiffiffiffiffiffi
λ�1�n

q
jϕBijϕCDi, (13)

jϕ�f �
BCDi �

X
n

ffiffiffiffiffiffiffi
λ�2�n

q
jϕBCijϕDi, (14)

respectively. Here, {λ�1�n } are the joint eigenvalues of the reduced
density matrix of photon B and the reduced density matrix of
the two-photon part C, D. {λ�1�n } can be obtained by numeri-
cally calculating the eigenvalues of the reduced density matrix
of photon B. In the numerical calculation of {λ�1�n }, we first cal-
culate the reduced density matrix of photon B by tracing over
photons C and D ρB � TrCD�jϕ�f �

BCDihϕ�f �
BCDj� analytically. The

expression of ρB is given in Appendix C. We discretize the ex-
pression of ρB and transform it into a two-dimensional matrix
with finite size. To obtain the eigenvalues with high enough
precision, the values in every dimension of the matrix have
a large enough value range, and small enough intervals.
Then we obtain eigenvalues {λ�1�n } of the matrix ρB by numeri-
cal calculation software. In principle, the reduced density ma-
trix of photon B has infinite eigenvalues, but only a finite
number of eigenvalues have nonnegligible values that need

Fig. 4. Frequency-space joint probability density of the three-
photon state jD�f �

pqr�t�j2. The parameters are (a) ϵA � 0.05ΓA;
(b) ϵA � 0.1ΓA. Other parameters are ΓA � ΓB � ΓC � ΓD, γ2 �
γ3 � γ4 � 0.02ΓA, δA � 0.
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to be included in the calculation. Similarly, {λ�2�n } are the joint
eigenvalues of the reduced density matrix of the two-photon
part B, C and the reduced density matrix of photon D, and
they can be obtained by numerically calculating the eigenvalues
of the reduced density matrix of photon D. We calculate the
reduced density matrix of photon D by tracing over photons B
and C ρD � TrBC�jϕ�f �

BCDihϕ�f �
BCDj� analytically. The reduced

density matrices of photon D are given in Appendix C.
With the same method as calculating {λ�1�n }, we can obtain
the eigenvalues {λ�2�n } of the reduced density matrices of
photon D. With {λ�1�n } and {λ�2�n }, we can calculate the entropies
of entanglement as

S1 � −
X
n

λ�1�n log2λ
�1�
n , (15)

S2 � −
X
n

λ�2�n log2λ
�2�
n , (16)

and the Schmidt numbers

K 1 �
1P
nλ

�1�2
n

, (17)

K 2 �
1P
nλ

�2�2
n

: (18)

We first discuss the entanglement between photon B and
the two-photon part including C and D. In Figs. 5(a) and
5(b), we show the entropy of entanglement S1 and the
Schmidt number K 1 as functions of coupling strength ΓC, with
different incident photon spectral widths ϵA. It is shown that as
ΓC increases, both S1 and K 1 increase, and therefore the en-
tanglement increases. This is because after the emitter decays
from state j4i to j3i by emitting photon B, a stronger coupling

strength ΓC allows the emitter to decay from state j3i to j2i and
j1i faster, and emit photons C and D faster. Therefore, photons
B and C, D are more inclined to be bound together and have a
higher degree of entanglement. We also find that a smaller in-
cident photon band width ϵA leads to higher values of S1 and
K 1. In the inset in Fig. 5(b), we set ΓC � 1.5ΓA, and show the
first 25 joint eigenvalues λ�1�n , n � 1, 2, :::, 25. We can see that
with a smaller ϵA, there are more effective eigenvalues, which
results in a higher degree of entanglement. The reason is that a
smaller incident photon bandwidth ϵA leads to a narrower joint
spectrum bandwidth of the three-photon state due to the
stronger restriction by the energy conversation law. Then we
discuss the entanglement between two-photon part B, C
and photon D. In Figs. 5(c) and 5(d), we show the entropy
of entanglement S2 and the Schmidt number K 2 as functions
of coupling strength ΓC, with different incident photon spectral
widths ϵA. We find that when ΓC∕ΓA < 1, i.e., ΓC < ΓD, as
ΓC decreases, both S2 and K 2 increase, and therefore the en-
tanglement increases. This is because with a smaller ΓC, the
emitter in j3i emits photon C more slowly and decays to
j2i, and then the emitter will emit photon D fast and decay
to j1i. Therefore, photons B, C, and D are more inclined
to be bound together and have a higher degree of entanglement.
When ΓC > ΓD, as ΓC increases, both S2 and K 2 tend to be
constants. The inset in Fig. 5(d) shows that a smaller ϵA leads to
a higher degree of entanglement, which is similar to the inset in
Fig. 5(b). We also have studied the effect of ΓD on S1, K 1, S2,
and K 2. We find that the value of ΓD does not affect S1 and
K 1. The effect of ΓD on S2 and K 2 is shown in Fig. 7 in
Appendix C, which is similar to the effect of ΓC on S1 and
K 1 in Figs. 5(a) and 5(b).

In Figs. 6(a)–6(c), we show the probability of generating B,
C, D three-photon state PBCD, surviving A photon probability
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Fig. 5. (a) Entanglement entropy S1 and (b) Schmidt number K 1

of photon B and two-photon part C, D, (c) entanglement entropy S2
and (d) Schmidt number K 2 of two-photon part B, C and photon D,
as functions of ΓC∕ΓA with different values of ϵA. In all figures, red
curves with triangles: ϵA � 0.05ΓA ; blue curves with squares:
ϵA � 0.1ΓA . Insets in (b) and (d) show the first 25 joint eigenvalues
{λ�1�n } and {λ�2�n } of the reduced density matrix of photon B and photon
D with ΓC∕ΓA � 1.5, respectively. Red circles: ϵA � 0.05ΓA; blue
asterisks: ϵA � 0.1ΓA. Other parameters are: ΓB � ΓD � ΓA,
γ2 � γ3 � γ4 � 0.02ΓA .
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Fig. 6. Probability of (a) three-photon state PBCD, (b) photon A
PA , and (c) dissipation PDis after scattering as functions of spectrum
width ϵA of incident photon A and coupling strength ΓB. The white
dashed lines in (a) and (b) show the maximum values of PBCD and the
minimum values of PA along the ΓB∕ΓA axis, respectively. (d) PBCD,
PA , and PDis as functions of ΓB in the monochromatic light limit
ϵA∕ΓA� 10−4. Other parameters are ΓC � ΓD � ΓA , γ2 �
γ3 � γ4 � 0.02ΓA , δA � 0.
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PA, and dissipation probability PDis, respectively, as functions
of spectrum width ϵA of incident photon A and coupling
strengths ΓB. The derivation of PBCD, PA, and PDis is shown
in Appendix D. It is shown that smaller ϵA leads to higher PBCD

[Fig. 6(a)] and lower PA [Fig. 6(b)]. This is because for smaller
ϵA, incident photon A has more resonant components, and the
efficiency of frequency downconversion is higher. We also find
that around the area ΓB∕ΓA � 1, PBCD takes its maximum
value and PA takes its minimum value, which means that in-
cident photon A can be transformed into a three-photon state
with maximum probability. This is because around the area
ΓB∕ΓA � 1, the directly transmitted amplitude of incident
photon A and the re-emitted amplitude of photon A destruc-
tively interfere, which results in the total absorption of
photon A. Then the absorbed photon energy can be emitted
from the cascaded pathway from which the B, C, D three-
photon bound state is generated. The exact value of ΓB∕ΓA that
leads to the maximum three-photon state probability P�max�

BCD

and minimum A photon probability P�min�
A is also affected

by the incident photon bandwidth ϵA and emitter dissipation
γ4. For example, in the monochromatic light limit ϵA → 0, the
condition ΓB � ΓA � γ4 leads to P�max�

BCD , while the condition
ΓB � ΓA − γ4 leads to P�min�

A . In Fig. 6(d) with γ4∕ΓA �
0.02 and in the monochromatic light limit, we can see that
P�max�
BCD and P�min�

A appear at points ΓB∕ΓA � 1.02 and
ΓB∕ΓA � 0.98, respectively. From the figure, we can also
see that the probability to generate the three-photon entangled
state decreases with the input photon bandwidth and dissipa-
tion rate. With ΓB∕ΓA � 1 and ϵA∕ΓA < 0.05, PBCD is still
more than 90% with PA being less than 5% and the dissipation
PDis due to spontaneous decay of emitter being less than 5%.

4. CONCLUSION

We study the photon scattering properties of a four-level emit-
ter coupled to a waveguide loop. By employing a Sagnac inter-
ferometer, which is a waveguide loop coupled to two 1D line
waveguides with a 50/50 BS, an incident high-frequency single
photon from a line waveguide can be transformed into a sym-
metric superposition of the clockwise and counterclockwise
modes of the waveguide loop. When coupling strengths of

the two transition paths of the emitter to the waveguide loop
are equal, such an input photon can be completely absorbed by
the emitter due to the complete destructive interference be-
tween the directly transmitted photon amplitude and the ab-
sorbed, re-emitted photon amplitude, and then the emitter
emits three lower-frequency photons. The three-photon state
we generated is entangled in frequency space because the
sum of the frequencies of the three photons should be equal
to the frequency of the initial incident photon due to energy
conservation. This generated three-photon state is a kind of
continuous-variable entangled state, and we have shown that
its entropy of entanglement is non-zero, which indicates that
the three photons are indeed in an entangled state. In addition,
the generated three-photon state is also bound in real space,
i.e., they tend to appear in a bundle. The degrees of entangle-
ment and binding can bemanipulated by changing the coupling
strengths among the three transition paths of the emitter and the
waveguide modes. The three-photon state can be generated on
demand, and its output time is determined only by the input
time of the initial photon.We also consider nonideal conditions
such as the emitter dissipation and the off-resonance compo-
nents in the input photon packet, and the success probability
of generating a three-photon entangled state can still be higher
than 90%.Our scheme can be used in integrated quantum pho-
tonics systems for quantum information processing.

APPENDIX A: DERIVATION OF THE SYSTEM
STATE [EQ. (8)] AFTER SCATTERING

From Hamiltonian [Eq. (2)], we can see that the emitter can
absorb photon A, and be excited into state j4i. Then the emit-
ter can either jump back into state j1i directly, or jump into
states j3i, j2i, and j1i successively, which can emit three pho-
tons denoted as B, C, and D, respectively. Thus, the state of the
system at arbitrary times can be written as

jΨ�t�i �
Z

dkAk�t�a†ekj∅, 1i �
Z

dpBp�t�b†epj∅, 3i

�
Z

dp
Z

dqCpq�t�b†epc†eqj∅, 2i

�
Z

dp
Z

dq
Z

drDpqr�t�b†epc†eqd †
er j∅, 1i

� E�t�j∅, 4i, (A1)

where coefficients Ak�t�, Bp�t�, Cpq�t�, Dpqr�t�, and E�t� are
the corresponding amplitudes, to be determined. Upon substi-
tuting Hamiltonian of Eq. (2) and state of Eq. (A1) into the
Schrödinger equation

i
∂
∂t
jΨ�t�i � H �e�

I jΨ�t�i, (A2)

we obtain a set of coupled equations given by

i
∂
∂t
Ak�t� � Δ�A�

k Ak�t� �
ffiffiffi
2

p
V aE�t�, (A3a)

i
∂
∂t
Bp�t� � �Δ�B�

p − iγ3∕2�Bp�t�

�
Z

dq
ffiffiffi
2

p
V cCpq�t� �

ffiffiffi
2

p
V bE�t�, (A3b)
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Fig. 7. (a) Entanglement entropy S2 and (b) Schmidt number K 2

of two-photon part B, C and part D as functions of ΓD∕ΓA with differ-
ent values of ϵA. In both figures, red curves with triangles:
ϵA � 0.05ΓA; blue curves with squares: ϵA � 0.1ΓA. Insets in
(b) shows the first 25 joint eigenvalues {λ�2�n } of the reduced density
matrix of photon D with ΓD∕ΓA � 1.5. Red circles: ϵA � 0.05ΓA ;
blue asterisks: ϵA � 0.1ΓA . Other parameters are ΓB � ΓC � ΓA ,
γ2 � γ3 � γ4 � 0.02ΓA .
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i
∂
∂t
Cpq�t� �

ffiffiffi
2

p
V cBp�t� � �Δ�B�

p � Δ�C�
q − iγ2∕2�Cpq�t�

�
Z

dr
ffiffiffi
2

p
V dDpqr�t�, (A3c)

i
∂
∂t
Dpqr�t� �

ffiffiffi
2

p
V dCpq�t� � �Δ�B�

p � Δ�C�
q � Δ�D�

r �Dpqr�t�,
(A3d)

i
∂
∂t
E�t� �

Z
dk

ffiffiffi
2

p
V aAk�t� �

Z
dp

ffiffiffi
2

p
V bBp�t�

− iγ4∕2E�t�: (A3e)

We perform a Laplace transformation on Eq. (A3) and
obtain

isÃk�s� � Δ�A�
k Ãk�s� �

ffiffiffi
2

p
V aẼ�s� � iAk�0�, (A4a)

isB̃p�s� � �Δ�B�
p − iγ3∕2�B̃p�s� �

Z
dq

ffiffiffi
2

p
V cC̃ pq�s�

�
ffiffiffi
2

p
V bẼ�s�, (A4b)

isC̃ pq�s� �
ffiffiffi
2

p
V cB̃p�s� � �Δ�B�

p � Δ�C�
q − iγ2∕2�C̃pq�s�

�
Z

dr
ffiffiffi
2

p
V dD̃pqr�s�, (A4c)

isD̃pqr�s� �
ffiffiffi
2

p
V dC̃ pq�s� � �Δ�B�

p � Δ�C�
q � Δ�D�

r �D̃pqr�s�,
(A4d)

isẼ�s� �
Z

dk
ffiffiffi
2

p
V aÃk�s� �

Z
dp

ffiffiffi
2

p
V bB̃p�s� − iγ4∕2Ẽ�s�:

(A4e)
By solving Eq. (A4), we obtain

Ãk�s� � iΓA

ffiffiffiffiffi
ϵA
π

r
1

s � iΔ�A�
k

1

s � ϵA � iδA

×
1

s � γ4∕2� ΓA∕2� ΓB∕2

�
ffiffiffiffiffi
ϵA
π

r
1

s � iΔ�A�
k

1

Δ�A�
k − δA � iϵA

, (A5a)

B̃p�s� � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵAΓAΓB

π

r
1

s � ϵA � iδA

1

s � γ4∕2� ΓA∕2� ΓB∕2

×
1

s � ΓC∕2� iΔ�B�
p � γ3∕2

, (A5b)

C̃pq�s� �
1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵAΓAΓBΓC

2

r
1

s � γ4∕2� ΓA∕2� ΓB∕2

×
1

s � ϵA � iδA

1

s � ΓC∕2� iΔ�B�
p � γ3∕2

×
1

s � ΓD∕2� iΔ�B�
p � iΔ�C�

q � γ2∕2
, (A5c)

D̃pqr�s� � −
i
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵAΓAΓBΓCΓD

π

r
1

s � γ4∕2� ΓA∕2� ΓB∕2

×
1

s � ϵA � iδA

1

s � ΓC∕2� iΔ�B�
p � γ3∕2

×
1

s � ΓD∕2� iΔ�B�
p � iΔ�C�

q � γ2∕2

×
1

s � iΔ�B�
p � iΔ�C�

q � iΔ�D�
r

, (A5d)

Ẽ�s� � −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵAΓA

p

s � ϵA � iδA

1

s � γ4∕2� ΓA∕2� ΓB∕2
: (A5e)

Here, ΓA � 4πV 2
a , ΓB � 4πV 2

b, ΓC � 4πV 2
c , and ΓD �

4πV 2
d are spontaneous emission rates from the emitter to

the waveguide through transition paths j4i → j1i, j4i → j3i,
j3i → j2i, and j2i → j1i, respectively. When the scattering is
finished (i.e., t ≫ 1∕ϵA, 1∕ΓA, 1∕ΓB, 1∕ΓC, 1∕ΓD), after per-
forming the inverse Laplace transformation on Eq. (A5), we
obtain solution of Eq. (8).

APPENDIX B: DERIVATION OF THE SYSTEM
STATE IN REAL SPACE (10) AFTER
SCATTERING

We transform the photon state of Eq. (8) with amplitudes
shown in Eqs. (9a) and (9b) into the Schrödinger picture

jΨ�f ��t�iS � e−iH 0t jΨ�f ��t�i �
Z

dkA�f �
k �t�e−iωat a†ekj∅, 1i

�
Z

dp
Z

dq
Z

drD�f �
pqr�t�

× e−iωbt e−iωct e−iωdt b†epc†eqd †
er j∅, 1i: (B1)

By substituting the Fourier transformation

a†ek �
Z

dua†e �u�
eikuffiffiffiffiffi
2π

p , (B2a)

b†ep �
Z

dxb†e �x�
eipxffiffiffiffiffi
2π

p , (B2b)

c†eq �
Z

dyc†e �y�
eiqyffiffiffiffiffi
2π

p , (B2c)

d †
er �

Z
dzd †

e �z�
eirzffiffiffiffiffi
2π

p , (B2d)

into Eq. (B1), we obtain the photon state in real
space [Eq. (10)].
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APPENDIX C: REDUCED DENSITY MATRICES OF PHOTON B AND PHOTON D AND A FIGURE
SHOWING S2, K2 AS FUNCTIONS OF ΓD

The reduced density matrix of photon B is

ρB � TrCD�jϕ�f �
BCDihϕ�f �

BCDj�

�
Z

dΔ�C�
q 00

Z
dΔ�D�

r 0 0 h∅, 1jceq 00d er 00 jϕ�f �
BCDihϕ�f �

BCDjc†eq 00d †
er 0 0 j∅, 1i

�
Z

dΔ�B�
p

Z
dΔ�B�

p 0 ρB�p, p 0�b†epj∅, 1ih∅, 1jbep 0 , (C1)

where

ρB�p, p 0� �
Z

dΔ�C�
q 00

Z
dΔ�D�

r 00
1

PBCD

Dpq 0 0r 00D�
p 0q 00r 00 � −

1

PBCD

ϵAΓAΓBΓCΓD

π
e−iΔpt eiΔp 0 t

×
�

1

Δp − Δp 0 � 2iϵA

1

Δp − Δp 0 � iΓ4∕2� δA � iϵA
×

1

−iΓ4∕2� δA � iϵA

1

−Δp 0 � iΓ3∕2� δA � iϵA

×
1

−Δp 0 − iΓ3∕2� δA � iϵA

1

iΓ2

� 1

Δp − Δp 0 − δA � iϵA � iΓ4∕2
1

−δA − iϵA � iΓ4∕2

×
1

Δp − Δp 0 � 2iΓ4∕2
1

−Δp 0 � iΓ3∕2� iΓ4∕2
×

1

−Δp 0 − iΓ3∕2� iΓ4∕2
1

iΓ2

� 1

Δp − δA � iϵA � iΓ3∕2
1

Δp 0 − δA − iϵA � iΓ3∕2

×
1

Δp � iΓ4∕2� iΓ3∕2
1

Δp 0 − iΓ4∕2� iΓ3∕2
×

1

2iΓ3∕2
1

2iΓ2∕2

�
: (C2)

Here, Γ2 � ΓD � γ2, Γ3 � ΓC � γ3, and Γ4 � ΓA � ΓB � γ4.
The reduced density matrix of photon D is

ρD � TrBC�jϕ�f �
BCDihϕ�f �

BCDj� �
Z

dΔ�B�
p 0 0

Z
dΔ�C�

q 0 0 h∅, 1jbep 0 0 ceq 0 0 jϕ�f �
BCDihϕ�f �

BCDjb†ep 0 0c†eq 0 0 j∅, 1i

�
Z

dΔ�D�
r

Z
dΔ�D�

r 0 ρD�r, r 0�d †
er j∅, 1ih∅, 1jd er 0 , (C3)

where

ρD�r, r 0� �
Z

dΔ�B�
p 0 0

Z
dΔ�C�

q 0 0
1

PBCD

Dp 0 0q 0 0rD�
p 0 0q 0 0r 0

� 1

PBCD

1

4π2
ϵAΓAΓBΓCΓD

π
e−iΔr t eiΔr 0 t�2iπ�2

×
�

1

Δr − Δr 0 � 2iϵA

1

Δr − Δr 0 � δA � iϵA � iΓ4∕2
×

1

δA � iϵA − iΓ4∕2
� 1

Δr − Δr 0 � iΓ4∕2 − δA � iϵA

×
1

iΓ4∕2 − δA − iϵA

1

Δr − Δr 0 � 2iΓ4∕2

�
×

1

Δr − Δr 0 � 2iΓ3∕2
1

Δr � iΓ2∕2
1

Δr 0 − iΓ2∕2
. (C4)

APPENDIX D: DERIVATION OF PROBABILITIES PA, PBCD, AND PDis

PA �
Z �∞

−∞
dkjA�f �

k �t�j2 � ΓA∕2 − ΓB∕2 − γ4∕2� ϵA − iδA
ΓA∕2� ΓB∕2� γ4∕2� ϵA − iδA

×
ΓA∕2 − ΓB∕2 − γ4∕2 − ϵA � iδA
ΓA∕2� ΓB∕2� γ4∕2 − ϵA � iδA

� 2ϵA
ΓA � ΓB � γ4

ΓA

ΓA∕2� ΓB∕2� γ4∕2� ϵA � iδA

×
ΓB � γ4

ΓA∕2� ΓB∕2� γ4∕2 − ϵA � iδA
, (D1)
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PBCD �
Z Z Z

dpdqdrjD�f �
pqr�t�j2

�
�

ΓA

ΓA∕2� ΓB∕2� γ4∕2� ϵA − iδA
×

ΓB

ΓA∕2� ΓB∕2� γ4∕2 − ϵA � iδA

−
2ϵA

ΓA � ΓB � γ4

ΓA

ΓA∕2� ΓB∕2� γ4∕2� ϵA � iδA
×

ΓB

ΓA∕2� ΓB∕2� γ4∕2 − ϵA � iδA

�

×
ΓC

ΓC � γ3

ΓD

ΓD � γ2
, (D2)

PDis � 1 − PA − PBCD: (D3)
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