• Photonics Research
  • Vol. 8, Issue 3, 395 (2020)
Chang Xu1, Tingfa Xu1、4、*, Ge Yan1, Xu Ma1、5、*, Yuhan Zhang1, Xi Wang1, Feng Zhao2, and Gonzalo R. Arce3
Author Affiliations
  • 1Key Laboratory of Photoelectronic Imaging Technology and System, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
  • 3Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA
  • 4e-mail: ciom_xtf1@bit.edu.cn
  • 5e-mail: maxu@bit.edu.cn
  • show less
    DOI: 10.1364/PRJ.377665 Cite this Article Set citation alerts
    Chang Xu, Tingfa Xu, Ge Yan, Xu Ma, Yuhan Zhang, Xi Wang, Feng Zhao, Gonzalo R. Arce. Super-resolution compressive spectral imaging via two-tone adaptive coding[J]. Photonics Research, 2020, 8(3): 395 Copy Citation Text show less
    References

    [1] D. Bannon. Hyperspectral imaging: cubes and slices. Nat. Photonics, 3, 627-629(2009).

    [2] S. R. Domingue, D. G. Winters, R. A. Bartels. Hyperspectral imaging via labeled excitation light and background-free absorption spectroscopy. Optica, 2, 929-932(2015).

    [3] D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, I. B. Strachan. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens. Environ., 90, 337-352(2004).

    [4] A. Gowen, C. O’Donnell, P. Cullen, G. Downey, J. Frias. Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol., 18, 590-598(2007).

    [5] G. Lu, B. Fei. Medical hyperspectral imaging: a review. J. Biomed. Opt., 19, 010901(2014).

    [6] F. A. Kruse, J. W. Boardman, J. F. Huntington. Comparison of airborne hyperspectral data and EO-1 hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sens., 41, 1388-1400(2003).

    [7] R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, O. Williams. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ., 65, 227-248(1998).

    [8] R. Basedow, D. Carmer, M. Anderson. HYDICE system, implementation and performance. Proc. SPIE, 2480, 258-267(1995).

    [9] B. K. Ford, M. R. Descour, R. M. Lynch. Large-image-format computed tomography imaging spectrometer for fluorescence microscopy. Opt. Express, 9, 444-453(2001).

    [10] F. A. Best, H. E. Revercomb, D. C. Tobin, R. O. Knuteson, J. K. Taylor, D. J. Thielman, D. P. Adler, M. W. Werner, S. D. Ellington, J. D. Elwell, D. K. Scott, G. W. Cantwell, G. E. Bingham, W. L. Smith. Performance verification of the geosynchronous imaging fourier transform spectrometer (GIFTS) on-board blackbody calibration system. Proc. SPIE, 6405, 64050I(2006).

    [11] X. Lin, G. Wetzstein, Y. Liu, Q. Dai. Dual-coded compressive hyperspectral imaging. Opt. Lett., 39, 2044-2047(2014).

    [12] J. J. Puschell. Hyperspectral imagers for current and future missions. Proc. SPIE, 4041, 121-132(2000).

    [13] Q. Li, X. He, Y. Wang, H. Liu, D. Xu, F. Guo. Review of spectral imaging technology in biomedical engineering: achievements and challenges. J. Biomed. Opt., 18, 100901(2013).

    [14] S. C. Gebhart, R. C. Thompson, A. Mahadevan-Jansen. Liquid-crystal tunable filter spectral imaging for brain tumor demarcation. Appl. Opt., 46, 1896-1910(2007).

    [15] S. J. Woltman, G. D. Jay, G. P. Crawford. Liquid-crystal materials find a new order in biomedical applications. Nat. Mater., 6, 929-938(2007).

    [16] M. D. Evans, C. Thai, J. C. Grant. Development of a spectral imaging system based on a liquid crystal tunable filter. Trans. ASAE, 41, 1845-1852(1998).

    [17] O. Aharon, I. Abdulhalim. Liquid crystal lyot tunable filter with extended free spectral range. Opt. Express, 17, 11426-11433(2009).

    [18] Y. August, C. Vachman, Y. Rivenson, A. Stern. Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains. Appl. Opt., 52, D46-D54(2013).

    [19] R. M. Willett, M. F. Duarte, M. A. Davenport, R. G. Baraniuk. Sparsity and structure in hyperspectral imaging: sensing, reconstruction, and target detection. IEEE Signal Process. Mag., 31, 116-126(2014).

    [20] D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52, 1289-1306(2006).

    [21] E. J. Candés, J. Romberg, T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52, 489-509(2006).

    [22] L. Zhang, D. Liang, B. Li, Y. Kang, Z. Pan, D. Zhang, X. Ma. Study on the key technology of spectral reflectivity reconstruction based on sparse prior by a single-pixel detector. Photon. Res., 4, 115-121(2016).

    [23] H. Arguello, H. F. Rueda, G. R. Arce. Spatial super-resolution in code aperture spectral imaging. Proc. SPIE, 8365, 83650A(2012).

    [24] X. Wang, Y. Zhang, X. Ma, T. Xu, G. R. Arce. Compressive spectral imaging system based on liquid crystal tunable filter. Opt. Express, 26, 25226-25243(2018).

    [25] G. R. Arce, D. J. Brady, L. Carin, H. Arguello, D. S. Kittle. Compressive coded aperture spectral imaging: an introduction. IEEE Signal Process. Mag., 31, 105-115(2014).

    [26] A. Rajwade, D. Kittle, T. Tsai, D. J. Brady, L. Carin. Coded hyperspectral imaging and blind compressive sensing. SIAM J. Imaging Sci., 6, 782-812(2013).

    [27] H. Arguello, G. R. Arce. Code aperture optimization for spectrally agile compressive imaging. J. Opt. Soc. Am. A, 28, 2400-2413(2011).

    [28] L. Wang, T. Zhang, Y. Fu, H. Huang. HyperReconNet: joint coded aperture optimization and image reconstruction for compressive hyperspectral imaging. IEEE Trans. Image Process., 28, 2257-2270(2019).

    [29] H. Arguello, G. R. Arce. Restricted isometry property in coded aperture compressive spectral imaging. IEEE Statistical Signal Processing Workshop (SSP), 716-719(2012).

    [30] H. Arguello, G. R. Arce. Colored coded aperture design by concentration of measure in compressive spectral imaging. IEEE Trans. Image Process., 23, 1896-1908(2014).

    [31] Z. Wang, G. R. Arce. Variable density compressed image sampling. IEEE Trans. Image Process., 19, 264-270(2010).

    [32] J. Hahn, C. Debes, M. Leigsnering, A. M. Zoubir. Compressive sensing and adaptive direct sampling in hyperspectral imaging. Digit. Signal Process., 26, 113-126(2014).

    [33] L. Wang, Z. Xiong, G. Shi, F. Wu, W. Zeng. Adaptive nonlocal sparse representation for dual-camera compressive hyperspectral imaging. IEEE Trans. Pattern Anal. Mach. Intell., 39, 2104-2111(2017).

    [34] J. Zhang, D. Zhao, F. Jiang, W. Gao. Structural group sparse representation for image compressive sensing recovery. Data Compression Conference, 331-340(2013).

    [35] Z. Zha, X. Liu, X. Huang, H. Shi, Y. Xu, Q. Wang, L. Tang, X. Zhang. Analyzing the group sparsity based on the rank minimization methods. IEEE International Conference on Multimedia and Expo (ICME), 883-888(2017).

    [36] X. Yuan, T. Tsai, R. Zhu, P. Llull, D. Brady, L. Carin. Compressive hyperspectral imaging with side information. IEEE J. Sel. Top. Signal Process., 9, 964-976(2015).

    [37] X. Wang, J. Liang. Side information-aided compressed sensing reconstruction via approximate message passing. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3330-3334(2014).

    [38] J. F. C. Mota, N. Deligiannis, M. R. D. Rodrigues. Compressed sensing with side information: geometrical interpretation and performance bounds. IEEE Global Conference on Signal and Information Processing (GlobalSIP), 512-516(2014).

    [39] J. Yang, X. Liao, X. Yuan, P. Llull, D. J. Brady, G. Sapiro, L. Carin. Compressive sensing by learning a Gaussian mixture model from measurements. IEEE Trans. Image Process., 24, 106-119(2015).

    [40] L. Galvis, D. Lau, X. Ma, H. Arguello, G. R. Arce. Coded aperture design in compressive spectral imaging based on side information. Appl. Opt., 56, 6332-6340(2017).

    [41] X. Ma, H. Zhang, X. Ma, G. R. Arce, T. Xu, T. Mao. Snapshot compressive spectral imaging based on adaptive coded apertures. Proc. SPIE, 10658, 1065803(2018).

    [42] M. Yang, F. Hoog, Y. Fan, W. Hu. Adaptive sampling by dictionary learning for hyperspectral imaging. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sensing, 9, 4501-4509(2016).

    [43] M. A. López-Alvarez, J. Hernández-Andrés, J. Romero. Developing an optimum computer-designed multispectral system comprising a monochrome CCD camera and a liquid-crystal tunable filter. Appl. Opt., 47, 4381-4390(2008).

    [44] M. P. Edgar, G. M. Gibson, M. J. Padgett. Principles and prospects for single-pixel imaging. Nat. Photonics, 13, 13-20(2018).

    [45] N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, M. J. Padgett. Single-pixel infrared and visible microscope. Optica, 1, 285-289(2014).

    [46] H. Partanen, A. Friberg, T. Setälä, J. Turunen. Spectral measurement of coherence Stokes parameters of random broadband light beams. Photon. Res., 7, 669-677(2019).

    [47] Y. Fu, Y. Zheng, I. Sato, Y. Sato. Exploiting spectral-spatial correlation for coded hyperspectral image restoration. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3727-3736(2016).

    [48] R. A. Ulichney. Dithering with blue noise. Proc. IEEE, 76, 56-79(1988).

    [49] E. J. Candés, T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory, 52, 5406-5425(2006).

    [50] M. A. T. Figueiredo, R. D. Nowak, S. J. Wright. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process., 1, 586-597(2007).

    [51] J. M. Bioucas-Dias, M. A. T. Figueiredo. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process., 16, 2992-3004(2007).

    [52] S. J. Wright, R. D. Nowak, M. A. T. Figueiredo. Sparse reconstruction by separable approximation. IEEE Trans. Signal Process., 57, 2479-2493(2009).

    [53] E. Candès, J. Romberg. Sparsity and incoherence in compressive sampling. Inverse Probl., 23, 969-985(2007).

    [54] E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math., 59, 1207-1223(2006).

    [55] X. Ma, D. Shi, Z. Wang, Y. Li, G. R. Arce. Lithographic source optimization based on adaptive projection compressive sensing. Opt. Express, 25, 7131-7149(2017).

    [56] H. Zhang, W. He, L. Zhang, H. Shen, Q. Yuan. Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens., 52, 4729-4743(2014).

    CLP Journals

    [1] Chang Xu, Tingfa Xu, Ge Yan, Xu Ma, Yuhan Zhang, Xi Wang, Feng Zhao, Gonzalo R. Arce. Super-resolution compressive spectral imaging via two-tone adaptive coding: publisher’s note[J]. Photonics Research, 2020, 8(6): 892

    Chang Xu, Tingfa Xu, Ge Yan, Xu Ma, Yuhan Zhang, Xi Wang, Feng Zhao, Gonzalo R. Arce. Super-resolution compressive spectral imaging via two-tone adaptive coding[J]. Photonics Research, 2020, 8(3): 395
    Download Citation