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Coded apertures with random patterns are extensively used in compressive spectral imagers to sample the incident
scene in the image plane. Random samplings, however, are inadequate to capture the structural characteristics of
the underlying signal due to the sparsity and structure nature of sensing matrices in spectral imagers. This paper
proposes a new approach for super-resolution compressive spectral imaging via adaptive coding. In this method,
coded apertures are optimally designed based on a two-tone adaptive compressive sensing (CS) framework to
improve the reconstruction resolution and accuracy of the hyperspectral imager. A liquid crystal tunable filter
(LCTF) is used to scan the incident scene in the spectral domain to successively select different spectral channels.
The output of the LCTF is modulated by the adaptive coded aperture patterns and then projected onto a low-
resolution detector array. The coded aperture patterns are implemented by a digital micromirror device (DMD)
with higher resolution than that of the detector. Due to the strong correlation across the spectra, the recovered
images from previous spectral channels can be used as a priori information to design the adaptive coded apertures
for sensing subsequent spectral channels. In particular, the coded apertures are constructed from the a priori
spectral images via a two-tone hard thresholding operation that respectively extracts the structural characteristics
of bright and dark regions in the underlying scenes. Super-resolution image reconstruction within a spectral
channel can be recovered from a few snapshots of low-resolution measurements. Since no additional side infor-
mation of the spectral scene is needed, the proposed method does not increase the system complexity. Based on
the mutual-coherence criterion, the proposed adaptive CS framework is proved theoretically to promote the sens-
ing efficiency of the spectral images. Simulations and experiments are provided to demonstrate and assess the
proposed adaptive coding method. Finally, the underlying concepts are extended to a multi-channel method to
compress the hyperspectral data cube in the spatial and spectral domains simultaneously. © 2020 Chinese Laser

Press

https://doi.org/10.1364/PRJ.377665

1. INTRODUCTION

Hyperspectral imaging acquires the spatio-spectral data cube of
a scene over dozens to hundreds of narrow spectral bands [1,2].
Benefiting from the abundant spectral information, hyperspec-
tral imaging has been used in a diverse range of applications
from precision agriculture [3], food safety [4], medical diagno-
sis [5], to mineral mapping [6], and so on. Based on the data
cube acquisition modes, hyperspectral imaging approaches can
be classified into four categories known as whiskbroom [7],
pushbroom [8], snapshot [9], and staring [10] approaches.
Specifically, whiskbroom and pushbroom approaches are based

on scanning in pointwise and linewise fashions, respectively.
Snapshot approaches are proposed to multiplex the three-
dimensional (3D) data cube onto a two-dimensional (2D)
sensor, which is able to preserve the 2D spatial information
as images typically have underlying spatial properties.
However, there is a trade-off between the scanning process
and spatial resolution [11]. To address this issue, staring hyper-
spectral imagers are well defined to capture the 2D spatial in-
formation of the scene at once, and sequentially scan the spectra
using a rotating filter wheel or a tunable filter [12]. As they
flexibly select the interested spectral range, staring approaches
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have been widely used in the field of hyperspectral imag-
ing [13].

Recently, liquid crystal tunable filters (LCTFs) have been
used as spectral bandpass filters in staring hyperspectral imagers
attributed to their advantages of simple design, versatility, low
wavefront distortion, flexible throughput control, faster speed,
and large aperture with wide field of view [14–17]. However,
the conventional LCTF-based hyperspectral imager is limited
by the constant spatial resolution of its detector. In addition,
high-resolution detectors may not be available in some cases
[18]. Moreover, the substantial volume of hyperspectral images
causes a dilemma for subsequent transmission and storage of
the overall data [19]. The fast-emerging compressive sensing
(CS) theory is well defined as a useful tool to reconstruct
high-dimensional signals from much fewer multiplexed mea-
surements than those required by the Nyquist sampling theo-
rem, based on the sparse representation assumption [20–22].
Therefore, high-resolution images can be recovered from mea-
surements on the low-resolution detector using the CS method
[23]. In addition, compressive data are obtained during the
acquisition stage, requiring less volume of total measurements
than the original data cube. This benefits data transmission and
storage. With these motivations, Wang et al. applied CS to de-
velop a super-resolution LCTF-based hyperspectral imaging
approach [24]. In Ref. [24], the spectral images were modulated
in the spatial domain by a high-resolution random coded
aperture, and then projected onto a low-resolution detector.
However, random coding is suboptimal due to the sparse sens-
ing matrix of the system, and thus the reconstruction perfor-
mance can be improved with proper code design. Remarkably,
the coded aperture determines the structure of the projection
matrix in compressive sampling; thus it plays an important role
in improving the reconstruction accuracy of the hyperspectral
data cube [25,26]. The design of coded apertures has therefore
attracted wide attention from researchers, remaining an impor-
tant open issue in this field [27,28].

In the past, a set of numerical approaches has been developed
to optimize the coded apertures based on the restricted isometry
property [29,30] or empirical design rules [31,32]. However, the
coded apertures in these methods are pre-designed before the
data acquisition and cannot self-adapt to the characteristics of
the underlying signal. In addition, the optimization methods en-
tail high computational loads to the design process of spectral
imaging systems. Recently, side information has been used to
exploit non-local similarity [33], structural sparsity [34], rank
minimization [35], etc. [36–39] to aid the reconstruction of
undersampled signals. Learning from this concept, other ap-
proaches have been proposed to design the coded apertures based
on a priori information of the underlying spectral images
[40,41]. Nevertheless, these approaches require additional opti-
cal paths or auxiliary sensors to detect the side information of the
spectral scene, which inevitably increase the complexity of the
systems. In Ref. [42], Yang et al. proposed an adaptive CS sam-
pling strategy based on the dictionary learned from the training
data. However, the designed projection matrix in this method is
not binary, which makes it difficult to implement in hardware.

This paper proposes a two-tone adaptive CS (TACS) frame-
work that can be easily implemented by coded apertures to

enhance the spatial resolution and image quality of compressive
spectral imaging systems. The sketch of the proposed hyper-
spectral imager is illustrated in Fig. 1. The light rays emitted
from the target are incident upon the LCTF, which is used to
successively select different spectral channels. The LCTF is
considered an ideal spectral filter with narrow bandwidth that
outputs a monochromatic image corresponding to its center
wavelength [43]. The output of the LCTF is collected by the
imaging lens 1, and then spatially modulated by a high-
resolution coded aperture that is generated according to the
TACS method. In hardware, the coded aperture patterns are
implemented by the digital micromirror device (DMD). The
DMD consists of an array of micromirrors that are individually
controllable to generate different binary coded patterns
[44–46]. Finally, the imaging lens 2 focuses the reflected light
rays onto a low-resolution complementary metal oxide semi-
conductor (CMOS) detector. The CMOS detector is used
to collect the compressive measurements, from which a
high-resolution spectral image selected by the LCTF can be
reconstructed. In order to obtain the 3D spectral data cube,
the center wavelength of the LCTF needs to be tuned gradually
to scan different spectral slices. Note that the proposed imager
encodes the spectral images in the spatial domain, and thus spa-
tial super-resolution is achieved while the number of acquired
spectral channels remains the same. Because most of the hyper-
spectral images exhibit strong correlation among spectral chan-
nels, the spectra are assumed to be smooth [26,47]. Therefore,
the recovered images from the previous spectral channels can be
used as the reference images to construct the adaptive coded
apertures for the following spectral channels. Given an a priori
spectral image, a pair of complementary coded aperture pat-
terns is generated by a reverse thresholding operation to respec-
tively extract the structural characteristics of bright and dark
regions. Since no extra side information of the spectral scene
is needed, the proposed method does not increase the complex-
ity of the imaging system. In addition, the computational
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Fig. 1. Sketch of the LCTF-based hyperspectral imager.
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complexity to calculate the adaptive coded apertures is negli-
gible, compared to that of the conventional coded aperture op-
timization methods and the reconstruction process of the
spectral images.

In order to further improve the reconstruction performance,
multiple snapshots are carried out to increase the number of
measurements. In the data acquisition process, the center wave-
length of the LCTF is first fixed, and then different coded
aperture patterns are switched successively on the DMD. In
this paper, different coded aperture patterns are generated from
one reference image using the random dithering method [48].
It is worth highlighting that the proposed TACS framework is
proved theoretically to be valid based on the mutual-coherence
criterion. In a statistical sense, the projection matrix for TACS
is demonstrated to improve the sensing efficiency of the under-
lying signal. Simulation and experimental results verify the
superiority of the proposed TACS coding method in terms
of the imaging performance over the random coding method.
In addition, comparison with other adaptive coding methods is
provided to further assess the TACS coding method.

It should be noted that for the TACS method, each mea-
surement encompasses the information of one spectral channel;
thus only spatial compression is conducted. In order to com-
press the hyperspectral data cube in both spatial and spectral
domains, the underlying concepts are extended to a multi-
channel TACS method. During one integration time interval
of the detector, the LCTF is switched for several times to en-
compass a series of spectral channels into one snapshot. In each
snapshot, different spectral channels are modulated by different
coded aperture patterns, then multiplexed and integrated on
the CMOS detector. By doing so, each measurement includes
the information of multiple spectral channels, thus increasing
the compression capacity of the system. A set of simulations is
conducted to prove the feasibility of the proposed multi-chan-
nel TACS method.

The remainder of this paper is organized as follows.
Section 2 introduces the TACS framework. The proposed
two-tone adaptive compressive hyperspectral imaging system
is described in Section 3. Simulation and experimental results
of the TACS method are provided in Section 4 and Section 5,
respectively. The multi-channel TACS method is proposed and
assessed in Section 6. Section 7 concludes the paper with some
remarks.

2. TWO-TONE ADAPTIVE CS FRAMEWORK

A. CS Principles
It is known that most natural signals or images are sparse in
some representation basis. Suppose ~X ∈ RN×1 is a K -sparse sig-
nal in the basis Ψ � �~ψ1, ~ψ2,…, ~ψN � ∈ RN×N ; thus, it can be
expressed as ~X � Ψ~Θ, where Ψ is the sparse basis, and
~Θ ∈ RN×1 is the sparse coefficient vector including only K
(K ≪ N ) significant elements. Commonly used sparse bases
include Fourier transform basis, discrete cosine basis (DCT),
wavelet basis, and so on [49]. Let ~Y represent the compressive
measurements of ~X given by ~Y � Φ ~X � ΦΨ~Θ, where
Φ � �~ϕ1, ~ϕ2,…, ~ϕL�T ∈ RL×N is the projection matrix with

L ≪ N . According to CS theory, the sparse signal ~X can be
reconstructed from a few compressive measurements by solving
the following inverse problem [20]:

~̂Θ � arg min
~Θ
k ~Θk1, s:t: ~Y � Φ ~X � ΦΨ ~Θ, (1)

where k · k1 is the l1-norm, and ~̂Θ is the reconstructed coef-
ficient vector. Over the past years, a large number of algorithms
have been proposed to effectively solve the optimization prob-
lem in Eq. (1) [50–52].

It then becomes natural to ask what properties the projec-
tion matrix Φ needs to satisfy to recover the signal successfully
and accurately. Consider first the most general case where no a
priori information of ~X is known. It has been shown that ifΨ is
incoherent to Φ, ~X can be successfully recovered when the
number of measurements satisfies L � C · K · logN ≪ N ,
where C ≥ 1 is an oversampling factor [53]. The mutual
coherence between Ψ and Φ can be evaluated by

μ � maxfjh~ϕi, ~ψ jij2g,
i � 1, 2,…, L and j � 1, 2,…,N , (2)

where ~ϕi is the ith row ofΦ, ~ψ j is the jth column ofΨ, and the

vectors ~ϕi and ~ψ j are normalized to have unit energy. It is
remarkable that random projection matrices satisfy the incoher-
ent property with high probability for almost all sparse
signals [54].

However, in some other scenarios, some a priori information
of ~X is known beforehand. For instance, an approximate (not
exact) observation of the original signal is available, which can
be exploited to improve the coding and reconstruction
performance. To this end, Ma et al. introduced a design rule
for the projection matrices based on the approximate observa-
tion of original signals [55]. First, the columns of the basis Ψ
are separated into two sets: ϒ � f~ψ l�1�, ~ψ l�2�,…, ~ψ l�K �g and
ϒ̄, where l�i� indicates the location of the column correspond-
ing to the ith non-zero coefficient, and ϒ̄ is the complementary
set of ϒ. Accordingly, the mutual-coherence metric is
divided into two parts: μϒ � max~ψ j∈ϒfjh~ϕi, ~ψ jij2g and
μϒ̄ � max~ψ j∈ϒ̄fjh~ϕi, ~ψ jij2g. Given some a priori information
of ~X , it shows that a good projection matrix should maximize
the difference between μϒ and μϒ̄ [55].

B. TACS Projection Matrix
Monotone adaptive projection matrices were proposed in com-
putational lithography to satisfy the aforementioned design
rule, i.e., to maximize the difference between μϒ and μϒ̄ [55].
Suppose the observation of the original signal is given by

~S � ~X � ~ε, (3)

where ~ε ∈ RN×1 is the noise vector. The elements of ~ε are in-
dependent identical random variables obeying the Gaussian
distribution N �0, σ2X � with zero-mean and variance σ2X . The
monotone adaptive projection matrix with �1 elements can
be constructed by thresholding the observation ~S. However,
the negative elements in the projection matrix cannot be physi-
cally implemented by the coded aperture used in the imaging
system. That is because transmissive or reflective coded aper-
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tures modulate the amplitude of the incident wavefront with-
out changing the phase.

To overcome this limitation, this paper proposes a TACS
projection matrix with non-negative elements. The rows of
the projection matrix Φ are independently generated by
applying two-tone thresholding operations on the observation
~S. Supposing the measurement number L is an even number,
then the element of Φ in the ith row and jth column is
defined as

~ϕij �

8><
>:

1�sgn�~Sj−Λij�
2
ffiffiffi
N

p if 1 ≤ i ≤ L
2

1−sgn�~Sj−Λij�
2
ffiffiffi
N

p if L
2 < i ≤ L

, (4)

where sgn�·� is the sign operator, ~Sj is the jth element of ~S, and
the threshold level Λij obeys the Gaussian distribution
N �μΛ, σ2Λ�, where μΛ and σ2Λ are equal to the mean value
and variance of ~S, respectively.

The projection matrix defined in Eq. (4) constitutes two
sub-projection matrices with all elements equal to 0 or 1.
Figure 2 provides an intuitive illustration of different projection
matrices (N � 401, L � 100) for the one-dimensional signal
in Fig. 2(a). Figure 2(b) shows the conventional random pro-
jection matrix with Bernoulli sampling. Figure 2(c) illustrates
the TACS projection matrix. In Figs. 2(b) and 2(c), the white
and black pixels have the values of 1 and 0, respectively. Note
that the TACS projection matrix extracts some structural char-
acteristics of the original signal in Fig. 2(a), while the random
projection matrix does not. In particular, the TACS projection
matrix includes two sub-matrices. The top-half and bottom-
half sub-matrices respectively capture the structural character-
istics of the signal components beyond and below the threshold

values. Thus, the overall compressive measurements capture the
features of the entire signal.

Next, we use the design rule described in Subsection 2.A to
assess the merit of the TACS projection matrix. Note that the
voxels in hyperspectral images represent light intensities and
thus they are always non-negative. This property will be used
in the proof. In Appendix A, the proposed TACS projection
matrix is proved to make the mean values of μϒ and μϒ̄ satisfy
the following properties:

μ̄ϒ�Δ max
~ψ j∈ϒ

Efjh~ϕi, ~ψ jij2g >
k ~X k22

2NK 2θ2max

,

μ̄ϒ̄�Δ max
~ψ j∈ϒ̄

Efjh~ϕi, ~ψ jij2g

≈
1

4N

�� ffiffiffi
2

p
μXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π�σ2Λ � σ2X �
p 	 1

�XN
m�1

~̂ψm

�
2

, (5)

where Ef·g represents the mathematical expectation; θmax rep-
resents the maximum element in the coefficient vector ~Θ; and
μX , σ2X correspond to the mean value and variance of ~X , respec-
tively. ~̂ψm is the mth element in the vector ~̂ψ ∈ ϒ that max-
imizes the mathematical expectation. In Appendix B, we
further prove that if Ψ is chosen as the 2D-inverse DCT
(IDCT) basis, then Eq. (5) becomes

μ̄ϒ � max
~ψ j∈ϒ

Efjh~ϕi, ~ψ jij2g >
k ~X k22

2NK 2θ2max

,

μ̄ϒ̄ � max
~ψ j∈ϒ̄

Efjh~ϕi, ~ψ jij2g ≈ 0: (6)

Equation (6) indicates that the proposed TACS projection ma-
trix can separate μϒ and μϒ̄ in the statistical sense, thus making
it satisfy the design rule.

Fig. 2. Examples of different projection matrices (N � 401, L � 100) for the original signal shown in (a): (b) the random projection matrix and
(c) the TACS projection matrix.

Table 1. Comparison of Mean Values of μϒ and μϒ̄ Obtained by Random Projection Matrices and TACS Projection
Matrices

Signal Signal 1 with Dimension 400 × 1 Signal 2 with Dimension 2500 × 1

Projection matrix
Random

(N � 400,L � 50)
TACS

(N � 400,L � 50)
Random

(N � 2500,L � 120)
TACS

(N � 2500,L � 120)

μϒ 0.30927 0.32018 0.27633 0.30408
μϒ̄ 0.00405 0.00285 0.00080 0.00057
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Next, the superiority of the TACS projection matrix is veri-
fied by numerical simulations. Two signals with different
dimensions are used as the original signals to be measured.
Table 1 compares the mean values of μϒ and μϒ̄ obtained
by the random projection matrices and TACS projection ma-
trices. For each projection method, we repeat the simulations
100 times. In contrast to the random projection matrices, the
TACS projection matrices further increase the difference be-
tween μϒ and μϒ̄, and satisfy the design rule better. Thus,
the TACS projection matrix is apt to retain more information
of the original signal than the random projection matrix, and
benefits in improving the reconstruction performance.

3. SUPER-RESOLUTION HYPERSPECTRAL
IMAGER USING TACS CODED APERTURE

As shown in Fig. 1, the LCTF-based hyperspectral imager con-
sists of an LCTF, a DMD, and a CMOS detector. The input
spatio-spectral data cube, f 1�x, y, λ�, is scanned in the spectral
domain by tuning the center wavelength of the LCTF. This
paper assumes that the LCTF is an ideal spectral filter, the out-
put of which is considered a monochromatic image correspond-
ing to the center wavelength of the LCTF. Suppose the
transmission function of the LCTF is denoted as T nλ

s �λ�. The
output monochromatic image is expressed as f nλ

1 �x, y� �
f 0�x, y, λ� · T nλ

s �λ�, where the superscript nλ �nλ �
1, 2,…,N λ� represents the order number of the spectral chan-
nel. Then, the spectral images passing through the LCTF are
spatially modulated by the binary coded aperture patterns,
which are realized by the DMD. The DMD consists of an array
of micromirrors. The tilt angle of each micromirror can be
independently adjusted to change the direction of the reflected
light rays. The block/unblock coded aperture patterns can be
generated by flipping the corresponding micromirrors, and
only the light rays reflected from the unblock pixels are col-
lected to the main light path. The compressive measurement
obtained on the detector plane can be written as

gnλ�x, y� �
ZZ

f nλ
1 �x 0, y 0� · T c�x 0, y 0�dx 0dy 0

�
ZZ

f 0�x 0, y 0, λ� · T nλ
s �λ� · T c�x 0, y 0�dx 0dy 0, (7)

where T c�x, y� represents the transmittance of the coded
aperture.

In order to further improve the hyperspectral imaging per-
formance, multiple snapshots are taken to increase the number
of measurements. As shown in Fig. 3, the center wavelength of
the LCTF is first fixed to select a certain spectral channel. In
each spectral channel, the coded aperture pattern is switched for
L times to capture L different compressive measurements.
Afterwards, we tune the center wavelength of the LCTF to
the next spectral channel and repeat the measurement process
mentioned above. After scanning all the spectral channels, the
measurement procedure is terminated. In this case, the coded
aperture pattern is denoted as T l

c�x, y�, where l � 1, 2,…, L
indexes the order number of snapshots. Thus, the l th compres-
sive measurement in the nλth spectral channel, referred to as
gnλ, l �x, y�, is formulated as

gnλ , l �x, y� �
ZZ

f 0�x 0, y 0, λ� · T nλ
s �λ� · T l

c�x 0, y 0� · dx 0dy 0:

(8)

To simplify the analysis of the system, the imaging model in
Eq. (8) is reformulated into a discrete form. The hyperspectral
data cube is gridded into Nx × Ny × N λ voxels. Each voxel is
denoted as Fnx , ny , nλ , where nx , ny represent the spatial coordi-
nates (nx � 1, 2,…,Nx and ny � 1, 2,…,Ny). The require-
ment for super-resolution is that the pitch resolution of the
DMD should be higher than that of the CMOS detector.
Specifically, let Δc and Δd be the pitch sizes on the coded aper-
ture and the detector, respectively. Then, the ratio of resolution
between the coded aperture and the detector is defined as
R � Δd∕Δc. Assume R is a positive integer larger than 1.
That is, the dimension of the coded aperture is Nx × N y,
and the dimension of the detector is Mx ×My, where
Nx∕Mx � Ny∕My � R. Thus, the overall compression ratio
is defined as γo � γc · L � �1∕R�2 · L, where γc refers to the
compression ratio for one snapshot. In the l th snapshot, the
measurement on the �mx ,my�th pixel of the detector is repre-
sented by Gnλ, l

mx ,my. The discrete version of the imaging model in
Eq. (8) can be written as

Gnλ , l
mx ,my �

XRmx

nx�R�mx−1��1

XRmy

ny�R�my−1��1

Fnx , ny , nλ · T
nλ, l
nx , ny , nλ , (9)

where mx � 1, 2,…,Mx , my � 1, 2,…,My, and T nλ, l
nx , ny , nλ de-

notes the discrete transmittance of the LCTF and coded aper-
ture corresponding to the voxel �nx , ny, nλ�.

Alternatively, the hyperspectral data cube can be expressed as
its vector representation across N λ spectral channels. Let
~f nλ ∈ RNx ·Ny×1 denote monochromatic image in the nλth spec-
tral channel, which is sparse in a basis Ψ ∈ R�Nx ·Ny�×�Nx ·Ny�,

such that ~f nλ � Ψ~Θnλ . Assume ~gnλ ∈ RL·Mx ·My×1 is the vector-
ized representation of the measurement G in the nλth spectral
channel. Following this notation, the imaging model in Eq. (9)
can be rewritten as

Nx

n
sT

Hyperspectral
data cube

Channel 1
.
.
.

Channel N

Spectral 
channels

High-resolution
coded images

Coded 
aperture

Low-resolution
measurements

Transmittance of LCTF

.

.

.

.

.

.

Nx

Ny

Mx

My

Ny

Nx

x
y

1( )sT

N

Ny

( )

Fig. 3. Sequential scan of the spectral channels and compressive
measurements using multiple coded snapshots. Note the coarse reso-
lution of the detector array compared with that of the coded aperture.
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~gnλ � Φnλ
~f nλ � ~ρnλ � ΦnλΨ~Θnλ � ~ρnλ , (10)

where ~ρnλ ∈ RL·Mx ·My×1 represents the measurement noise.
Φnλ ∈ R�L·Mx ·My�×�Nx ·Ny� is the spatial transmission matrix of
the coded aperture for the nλth spectral channel, and it is con-
structed from the following:

Φnλ �

2
6666664

Φ1
nλ 0 … 0

0 Φ2
nλ … 0

..

. ..
. . .

. ..
.

0 0 … ΦMx ·My
nλ

3
7777775
, (11)

where Φi
nλ ∈ RL×R2�i � 1, 2,…,Mx ·My� denotes the trans-

mission matrix corresponding to the ith detector pixel, and
0 ∈ RL×R2

represents the zero matrix.
Thus, the coefficient vector of the hyperspectral image in the

nλth spectral channel can be reconstructed from the following
inverse optimization problem:

~̂Θnλ � arg min
~Θnλ

k ~Θnλk1, s:t: k~gnλ −ΦnλΨ ~Θnλk2 ≤ β, (12)

where k · k2 is the l 2-norm, and β is the bound of noise. Due to
the advantage in reconstruction quality, the gradient projection
for sparse reconstruction (GPSR) algorithm is used to solve the
optimization problem [50]. Other reconstruction algorithms
proposed in the CS realm, such as the two-step iterative shrink-
age/thresholding (TwIST) algorithm [51] and the sparse
reconstruction by separable approximation (SpaRSA) algorithm
[52], can also be used.

Next, we describe how to generate the TACS coded aper-
tures during the measurement process. Because the hyperspec-
tral images exhibit strong correlation among spectral channels,
that is, the spectra are smooth, the images in the adjacent spec-
tral channels should have similar structural characteristics [56].

Therefore, we can divide the entire spectra into several sub-
groups, each of which includes several adjacent spectral chan-
nels. As shown in Fig. 4, for each sub-group, one reference
spectral channel is selected and reconstructed using a random
coded aperture. After that, the reconstructed reference image is
used as the a priori information to construct the TACS coded
aperture for all spectral channels in this sub-group.

To explain this process more clearly, let us take a special case,
i.e., Mx ·My � 1. The images within the Nuth and Nvth
spectral channels belonging to the same sub-group are denoted
by INu

∈ RNx×Ny and INv
∈ RNx×Ny , respectively. Assume the

Nuth spectral channel is the reference channel. Then, the
reconstruction of INu

denoted by ÎNu
is used as the a priori

information to design the TACS coded aperture for the spectral
image INv

. Define an operator vec�·� that transforms an image
into its vectorized representation by stacking all the columns.
Due to the similarity between the adjacent spectral images, we
have vec�ÎNu

� ≈ vec�INv
� � ~ε, where ~ε denotes the error term.

Compared to Eq. (3), vec�INv
� and vec�ÎNu

� can be regarded as

the original signal ~X and its approximate observation ~S, respec-
tively. Let N � Nx · Ny, and we can generate L different adap-
tive projection vectors with length of N according to Eq. (4).
After that, these projection vectors are inversely stacked into L
different 2D TACS coded aperture patterns with dimension of
Nx × N y. In practice, we can reconstruct every R × R sub-
region on the spectral images independently, and then stitch
them up to obtain the full spectral images. In this case, Φi

nλ
in Eq. (11) is generated in accordance with the same process
as mentioned above. Each row of Φi

nλ is denoted by
ϕi,l
nλ ∈ R1×R2

, which represents the transmission function for
the ith spatial pixel on the detector in the l th snapshot.
That is, Φi

nλ � ��ϕi,1
nλ �T , �ϕi,2

nλ �T ,…�ϕi,L
nλ �T �T . Then, ϕi,l

nλ
can be stacked into an R × R matrix denoted by Πi,l

nλ. Note
that Πi,l

nλ represents the R × R sub-region on the coded

Imaging
 lens 1

LCTF

Reference spectral 
image

All  spectral images
 in the sub-group

Reconstructed 
image

Two-tone adaptive projection

Random
projection

Imaging
 lens 2

TACS coded 
apertures

on

Original data 
cube

Sub-groups 

Sub-group 1 

Sub-group Sg

Fig. 4. Method to generate the TACS coded apertures for the hyperspectral imaging systems.
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aperture for the l th snapshot. Stitching up the sub-matrices

Π1,l
nλ ,Π

2,l
nλ ,…,ΠMx ·My , l

nλ together, we can obtain the l th coded
aperture pattern.

4. SIMULATION RESULTS

A. Simulation Implementation of the TACS Coding
Method
In this subsection, two sets of simulations are conducted using
the real hyperspectral data, where the reconstruction perfor-
mance obtained by TACS coded apertures and random coded
apertures is compared. In the following simulations, the Lego
figures are used as the target, and the original hyperspectral data
cube consists of 256 × 256 pixels in the spatial domain and 24
spectral bands. More specifically, the center wavelengths of the
24 spectral bands are 450 nm, 459 nm, 467 nm, 476 nm,
485 nm, 493 nm, 502 nm, 511 nm, 520 nm, 528 nm, 537 nm,
546 nm, 554 nm, 563 nm, 572 nm, 580 nm, 589 nm, 598 nm,
607 nm, 615 nm, 624 nm, 633 nm, 641 nm, and 650 nm,
respectively. The intensity of the test data is normalized to
the range of [0,1]. The coded aperture includes 256 × 256
pixels, while the detector constitutes 32 × 32 pixels. Thus,
every 8 × 8 pixels on the coded aperture correspond to one
detector pixel and γc � �1∕8�2. The measurement error on the
detector is emulated by the white Gaussian noise with signal-to-
noise ratio (SNR) level of 30 dB. In the reconstruction process,
the 2D-IDCT basis is used to sparsely represent the spectral
images. All of the calculations are carried out using MATLAB
R2016a on a server with Intel Xeon E3-1505M v5 2.8 GHz
processor, and 64 GB memory.

According to Section 3, we first divide the entire spectra
evenly into four sub-groups and reconstruct one reference spec-
tral channel in each sub-group. At this point, the number of
snapshots L is set to 32. Figures 5(a) and 5(b) show an original
reference image and its reconstruction result using a random
coded aperture. Taking the recovered reference image as the
a priori information, the TACS coded aperture patterns are
generated for all spectral channels in the same sub-group. A
pair of the TACS coded aperture patterns is shown in
Figs. 5(c) and 5(d). It can be easily observed that these two
coded aperture patterns are approximately complementary,
and respectively extract the structural information within bright
and dark regions. Next, the TACS coded apertures are used to
modulate and reconstruct the spectral images with multiple
snapshots (L � 12). Thus, the overall compression ratio
is γo � 0.1875.

Figure 6 presents the spectral images obtained by the con-
ventional system and the reconstructed spectral images ob-
tained by different kinds of coded apertures for comparison.

Figure 6(a) illustrates the high-resolution original images of
four spectral channels in the data cube. Figure 6(b) shows
the low-resolution images captured by the conventional system,
which cannot achieve super-resolution without using the
theory of CS. The low-resolution images are simulated by
downsampling the original images along both horizontal and
vertical directions with a scaling factor of 8, and their spatial
resolution is 32 × 32 pixels. And they are presented to demon-
strate the resolution improvement brought by the compressive
imaging system. Figures 6(c) and 6(d) show the reconstructed
spectral images consisting of 256 × 256 pixels using TACS
coded apertures and random coded apertures, respectively.
Note that in Fig. 6(d), the spectral images are reconstructed
with 12 snapshots to make a fair comparison. The peak
SNRs (PSNRs) of the reconstructed images are also presented
in the figure. The proposed TACS coded apertures are shown
to effectively improve the reconstruction quality compared to
the random coded apertures under the same compression ratio.
In order to clearly illustrate the improvement, the specific re-
gions around the eyes are magnified in Fig. 6. Figure 7 plots the
original and reconstructed spectral signatures for three repre-
sentative points on the target. The three representative points
are selected from different colorful regions, as shown in
Fig. 7(a). The intensities in Figs. 7(b)–7(d) indicate the nor-
malized values of the spectra at those three spatial points.
The TACS coded apertures are proved to achieve superior fidel-
ity of the spectral reconstructions over the random coded aper-
tures. It shows that these reconstructed spectral signatures are
smooth, which implies that the proposed method is reasonable
to use the reconstructed images from previous spectral channels
as a priori information.

Fig. 5. (a) Original reference image; (b) the recovered image using a
random coded aperture; and (c), (d) a pair of the TACS coded aperture
patterns generated based on (b).
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Fig. 6. (a) Original spectral images, (b) the simulated low-resolution
images obtained by conventional system, (c) the reconstructed spectral
images using TACS coded apertures, and (d) the reconstructed spectral
images using random coded apertures. Magnified details are presented
as well.
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B. Impact of Key Factors on the Reconstruction
Performance
The impact of some key factors on the reconstruction perfor-
mance is studied in this subsection. Three key factors consid-
ered are the number of sub-groups, the compression ratio, and
the reconstruction algorithm. Figure 8(a) illustrates the average
reconstructed PSNRs in all spectral channels using the TACS
method with different sub-group numbers. In addition, the
PSNR curve obtained by random coded apertures is also pro-
vided for comparison. For each curve, the reconstruction sim-
ulations are repeated three times, and the average PSNRs of the
reconstructed images are calculated. In general, the quality of
the reconstructed images is enhanced when more sub-groups
are used. Increasing the number of sub-groups will decrease
the number of adjacent spectral channels in each sub-group.

Thus, the similarity among the spectral images within each
sub-group will also be improved. Since all spectral images in
a sub-group are modulated and reconstructed based on one
reference image, increasing the number of sub-groups will im-
prove the reconstruction accuracy. However, dividing the entire
spectra into more sub-groups will also increase the computa-
tional complexity. That is because one reference spectral chan-
nel is required to be reconstructed using a random coded
aperture for each sub-group. Given the number of sub-groups
Sg , we need to reconstruct Sg reference spectral channels.
Moreover, different sub-groups use different sets of adaptive
coded apertures. Then Sg adaptive coded apertures need to
be generated. Thus, the computational complexity to generate
the adaptive coded apertures is proportional to the number of
sub-groups.

Afterwards, we repeat the simulations in Fig. 6 using differ-
ent compression ratios. The curves of average reconstructed
PSNRs over the four spectral channels with respect to different
compression ratios are shown in Fig. 8(b). As can be noticed,
the TACS coded apertures outperform the random coded aper-
tures in the reconstruction performance under different com-
pression ratios. In addition, the advantage of TACS coded
apertures becomes more obvious as the compression ratio re-
duces. That is because the TACS coded apertures can extract
the structural characteristics of the target and retain more in-
formation of the spectral data cube in the compressive measure-
ments. For instance, when the compression ratio reduces to
0.1, the TACS coded apertures obtain 5.16 dB gain on the
average PSNR over the random coded apertures.

Furthermore, simulations are conducted using the TACS
coded apertures to compare the reconstruction quality and
computational efficiency of different reconstruction algo-
rithms. The settings of the simulation are the same as those
in Fig. 6. For each algorithm, we repeat the reconstructions
three times, and calculate the average PSNRs and runtime.
Figures 8(c) and 8(d) present the average PSNRs and runtime
corresponding to the GPSR algorithm, TwIST algorithm, and
SpaRSA algorithm, respectively. It is observed that the GPSR
algorithm can achieve the best reconstruction performance.
Although the computational efficiency of the GPSR algorithm
is lower than that of TwIST and SpaRSA algorithms, it is still
fast to handle the reconstruction problem. The TwIST algo-
rithm leads to the shortest runtime, but the reconstruction per-
formance is much worse than that of the other two algorithms,
especially in the spectral channels with shorter wavelengths.

C. Comparison with Other Adaptive Coding Methods
This subsection provides the simulation results of two other
adaptive coding methods to further illustrate the superiority
of the TACS coded apertures. In Ref. [40], Galvis et al. esti-
mated the edge of the scene using the image obtained from a
red–green–blue (RGB) sensor and subsequently designed the
structured coded aperture. They applied two different blue-
noise coded patterns to the edge and non-edge regions in order
to improve the reconstruction quality of the feature boundaries.
Yang et al. proposed an adaptive sampling strategy for hyper-
spectral images based on dictionary learning in Ref. [42].
Specifically, they first learned the over-complete dictionary
from the training data, and then computed a singular value

Fig. 7. (a) RGB image of the scene, and (b)–(d) the original and
reconstructed spectral signatures for three representative points, indi-
cated by P1, P2, and P3 in (a).

Fig. 8. Influence of three key factors on the reconstruction perfor-
mance. (a) The average reconstructed PSNRs in all spectral channels
using different sub-group numbers, (b) the curves of average recon-
structed PSNRs with respect to different compression ratios, and
(c) the average PSNRs and (d) runtime corresponding to different
reconstruction algorithms.
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decomposition from the dictionary. And a small number of left
singular vectors were used eventually as the rows of the projec-
tion matrix.

Based on the foundation of their work, we simulate these
two methods using our proposed framework. Adaptive coded
patterns are generated by replacing the RGB images in Galvis’s
method and the training data in Yang’s method with the recov-
ered images from previous spectral channels. Figures 9(a) and
9(b) respectively present examples of the coded patterns
generated by Galvis’s method and Yang’s method.

Next, the data cubes are recovered from a small set of mea-
surements, according to the same process and settings as
Subsection 4.A. Figure 10(a) illustrates the original images
of four spectral channels in the data cube. The reconstructed
spectral images using the TACS coding method, Galvis’s
method, and Yang’s method are respectively shown in
Figs. 10(b)–10(d). The average PSNRs for the entire recon-
structed data cubes using Galvis’s and Yang’s methods are

27.64 dB and 30.39 dB, respectively. As can be noticed, the
reconstruction performance using Galvis’s method is inferior
to the TACS coding method. That is because the content in-
formation of the RGB image in the non-edge regions is not
fully utilized. In addition, the proposed TACS coding method
outperforms Yang’s method. But the gap is not so obvious since
the dictionary is also adaptively learned from the a priori infor-
mation in Yang’s method. However, the process of dictionary
learning is time-consuming and the coded patterns in Yang’s
method are not binary, thus making it inapplicable for hard-
ware implementation.

5. EXPERIMENTAL RESULTS

This section demonstrates the proposed TACS coded apertures
on an experimental testbed of a staring hyperspectral imager
developed by our group. As shown in Fig. 11, the testbed con-
sists of an RL127-WHI-IC broadband ring light source
(Edmund), a VNIR-5/20-20-S LCTF (Wayho Technology),
two AC254-050-A imaging lenses (Thorlabs) with a focal
length of 50.2 mm, a DLP9500 DMD (Texas Instruments),
and an acA2040-90μm monochromatic CMOS camera
(Basler) to capture the measurements. The CMOS camera con-
sists of 1024 × 1024 pixels with a pitch size of 11.0 μm. The
DMD includes 1920 × 1080 micromirrors with a pitch size
of 10.8 μm.

The system should be calibrated beforehand. During the
calibration process, the distances between optical components
were adjusted to obtain one-to-one correspondence between
the coded aperture pixels and detector pixels. In addition,
the effect of dark noise was eliminated, and the non-uniformity
of the light source was corrected. Taking into account the ef-
fects of system impulse response and stray light, the coded aper-
ture patterns were first measured and recorded when the target
was replaced by a diffuse plate. Then, the normalized detected
patterns were regarded as the actual transmission functions of
the coded apertures. When all of the micromirrors on the
DMD were turned on, the measurements of the CMOS detec-
tor without spatial coding were considered the original images
of the target.

As described in Subsection 4.A, the entire spectra are evenly
divided into four sub-groups. The real target under detection is

Fig. 9. Examples of coded patterns generated by (a) Galvis’s method
and (b) Yang’s method.
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Fig. 11. Testbed of the staring hyperspectral imager with the pro-
posed TACS coded apertures.
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shown in Fig. 12(a). In the measurement stage, a resized region
including 400 × 400 pixels on the DMD was used to imple-
ment the coded apertures. Figure 12(b) illustrates an example
of random coded aperture patterns used to reconstruct the
reference spectral image, and Figs. 12(c) and 12(d) illustrate
the examples of TACS coded aperture patterns generated ac-
cording to the reference image. Compared with the random
coded apertures, TACS coded apertures extract the structural
characteristics of the scene effectively. To reconstruct the refer-
ence spectral channels, 32 snapshots were carried out using ran-
dom coded apertures. Then, 12 snapshots were taken with the
TACS coded aperture patterns to reconstruct all of the spectral
images within the same sub-group. The center wavelength
of the LCTF was tuned for 24 times in total to obtain 24
spectral bands, from 515 nm to 630 nm with an interval of
5 nm. In order to emulate the low-resolution detector, all
8 × 8 pixels on the detector were combined into one macro-
pixel, and then 50 × 50 macro-pixels were used to acquire
the measurement data.

As a comparison, we also built the testbed of the conven-
tional spectral imaging system without using CS theory. In
the conventional system, all the micromirrors on the DMD
were set to unblock, so that the incident light was directly re-
flected to the main optical path. In order to acquire the data
cube, the LCTF was switched for 24 times to obtain 24 spectral
images, each of which consists of 50 × 50 pixels. For the
conventional system, the time to collect the full data is 10 s,
while it costs 166 s to acquire all compressive measurements
of 24 spectral bands using 12 TACS coded aperture patterns.
That is because multiple snapshots are taken to improve the
reconstruction quality of super-resolution images for the
TACS method.

Figure 13 illustrates the spectral images obtained by differ-
ent methods using the experimental testbed. The original im-
ages in four spectral channels are presented in Fig. 13(a), and
the spatial resolution of these images is 400 × 400 pixels.
Figure 13(b) shows the images containing 50 × 50 pixels ac-
quired by the conventional system. The conventional system
does not utilize the CS theory; thus its spatial resolution is de-
termined by the low-resolution detector. The reconstructed
spectral images using TACS coded apertures and random coded
apertures both with 12 snapshots are respectively shown in
Figs. 13(c) and 13(d). The corresponding PSNRs of the recon-
structed images are also presented in the figure. The average
PSNRs for the entire reconstructed data cube using TACS
and random coded apertures are 23.80 dB and 20.59 dB,

respectively. To make the comparison more clear, the error
patterns of the recovered images with respect to the original
images are illustrated in Figs. 13(e) and 13(f ). In more detail,
Figs. 13(e) and 13(f ) show the color maps of error patterns
corresponding to the TACS coded apertures and random coded
apertures, respectively. Every pixel in the error pattern repre-
sents the absolute intensity error of the corresponding pixel
between the reconstructed image and the original image. In
addition, the mean square errors of all error patterns are
presented in Fig. 13. It is observed that the TACS coded aper-
tures achieve superior reconstruction quality over the random
coded apertures. Appendix C provides the comparison among
these different methods using the experimental testbed in
detail.

Figure 14 plots the original and reconstructed spectra of two
representative points on the target located at P1 and P2 in
Fig. 12(a). The spectra are characterized by the reflectances,
which are obtained through spectral calibration and have no
units. And the original spectral reflectances are measured by
an HR4000 grating spectrometer (Ocean Optics). It is shown
that the reconstructed spectra using the TACS coded apertures
are more consistent with the original spectra. As illustrated in

P2

P1

(a) (b) (c) (d)

Fig. 12. (a) RGB image of the target used in the experiment; (b) an
example of random coded aperture patterns; and (c), (d) the examples
of TACS coded aperture patterns.
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Fig. 13. (a) Original images in four spectral channels, (b) the low-
resolution images obtained by the conventional system, (c) the recon-
structed images obtained by TACS coded apertures, and (d) the re-
constructed images obtained by random coded apertures. The color
maps of the error patterns corresponding to (e) TACS coded apertures
and (f ) random coded apertures.
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Fig. 14, the spectra are smooth, which confirms the correlation
characteristic among the neighboring spectral channels again.

6. MULTI-CHANNEL TACS METHOD

In the above sections, only one spectral channel is captured dur-
ing one integration time interval of the detector. This section
proposes a multi-channel TACS method to introduce the spec-
tral compression and maintain the reconstruction quality with-
out changing the structure of the imaging system. During one
integration time interval of the detector, the LCTF is tuned for
several times to encompass a series of spectral channels into one
snapshot, each of which is modulated by different coded aper-
ture patterns loaded on the DMD. Then, the coded images in
these spectral channels are projected and integrated on the
CMOS detector. In this way, spectral images in multiple chan-
nels, rather than just one channel, are involved in each mea-
surement, thereby increasing the compression capacity of the
system. Different from Section 3, the overall compression ratio
is determined by

γom � γo ·
1

Q
� L

R2 · Q
, (13)

where Q represents the number of times to switch the LCTF
during each integration time interval, and Q < N λ. Compared
to the single-channel method described in Section 3, the com-
pression capacity of the system is increased by Q-fold.

Suppose the spectral images within the N 1th,N 2th,…,
NQ th channels are collected during one integration time inter-
val, and all of them belong to the same sub-group. Then, the
imaging model based on the multi-channel method is reformu-
lated as follows:

~gm � Φm
~f m � ~ρm � ΦmΨm

~Θm � ~ρm, (14)

where ~gm represents the measurements using the multi-channel

method; ~f m is the raster-scanned vector of the spectral images

in those NQ channels, i.e., ~f m � ��~f N 1
�T , �~f N 2

�T ,…,

�~f NQ
��T ∈ RQ ·Nx ·Ny×1; Ψm � diag�ΨN 1

,ΨN 2
,…,ΨNQ

� ∈
R�Q ·Nx ·Ny�×�Q ·Nx ·Ny�; ~ρm ∈ RL·Q ·Mx ·My×1 denotes the mea-
surement noise; and Φm ∈ R�L·Mx ·My�×�Q ·Nx ·Ny� can be ex-
pressed as

Φm �

2
666664

Φ1
m 0 … 0

0 Φ2
m … 0

..

. ..
. . .

. ..
.

0 0 … ΦMx ·My
m

3
777775, (15)

where 0 represents a zero matrix of order L × QR2. It is noted
that Φi

m ∈ RL×QR2�i � 1, 2,…,Mx ·My� is constructed as

Φi
m � �Φi

N 1
,Φi

N 2
,…,Φi

NQ
�, (16)

where Φi
N j
�j � 1, 2,…,Q� refers to the transmission sub-

matrix for the N jth spectral channel. As mentioned in
Section 3, all spectral channels in the same sub-group share
the same set of TACS coded aperture patterns. That means
Φi

N j
remains unchanged within the same sub-group.

However, in the multi-channel method, spectral images in dif-
ferent channels need to be modulated by different coded aper-
tures. So for the N jth channel, the corresponding Φi

N j
is

Fig. 14. Original and reconstructed spectra for two representative
points indicated by P1 and P2 as shown in Fig. 12(a).
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Fig. 15. (a) Original spectral images with center wavelengths of
554 nm, 563 nm, and 572 nm; (b) the simulated low-resolution im-
ages obtained by the conventional system; (c) the reconstructed spec-
tral images using the proposed multi-channel method, and the
reconstructed spectral images using the single-channel method with
(d) TACS coded apertures and (e) random coded apertures.
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respectively generated according to Section 3. Thus, ~f m can be
reconstructed by solving the problem in Eq. (14). After that, we
can obtain the spectral images in different channels by decom-

posing ~f m into ~f N 1
, ~f N 2

,…, ~f NQ
.

Next, we provide the simulation results of the proposed
multi-channel method. The reference spectral channels are ob-
tained and reconstructed as described in Subsection 4.A. And
all parameters are the same as those used in Subsection 4.A. In
particular, we capture three spectral channels during each in-
tegration time interval, that is Q � 3. Thus, the overall com-
pression ratio is γom � 0.0625, and the measurement number
is reduced to one third of that used for the single-channel
method. Figure 15(a) shows the original spectral images with
center wavelengths of 554 nm, 563 nm, and 572 nm. The si-
mulated low-resolution images obtained by the conventional
system are shown in Fig. 15(b) to illustrate the improvement
in spatial resolution. The reconstructed spectral images using
the multi-channel method are presented in Fig. 15(c).
Figures 15(d) and 15(e) illustrate the reconstructed spectral im-
ages using the single-channel method with TACS coded aper-
tures and random coded apertures, respectively. The average
PSNR for the entire reconstructed data cube using the
multi-channel method is 28.98 dB. Compared to the single-
channel method with random coded apertures, the proposed
multi-channel method can improve the reconstruction quality.
However, the reconstruction performance is inferior to the sin-
gle-channel method with TACS coded apertures, since the re-
duction of measurements will degrade the image quality. It can
be concluded that the proposed multi-channel method can im-
prove the compression capacity of the system, while maintain-
ing the reconstruction quality to a certain extent. In
Appendix D, a side-by-side comparison of the three coding
methods is summarized. In the future, experiments will be done
to verify the multi-channel method.

7. CONCLUSION

This paper developed a novel TACS coding method in spectral
imaging and demonstrated it based on the LCTF-based hyper-
spectral imager for the first time. CS theory was used to obtain
the high-resolution hyperspectral data cube that can be recov-
ered from a small set of measurements on the low-resolution
detector. Meanwhile, the proposed TACS coded apertures
can achieve superior reconstruction performance over the ran-
dom coded apertures, since the TACS coded apertures can cap-
ture the structural characteristics of the underlying target.
Moreover, it was proven that the TACS coding method satisfies
the mutual-coherence metric better than the traditional ran-
dom coding method. Using the proposed TACS coding, an
improvement up to 4.81 dB on the average reconstructed
PSNR is observed in the simulations. In addition, simulation
results of other adaptive coding methods are provided for fur-
ther comparison. Then experiments on the testbed were carried
out and the superiority of the proposed TACS coded apertures
was demonstrated. Finally, the multi-channel TACS method
was proposed to compress the hyperspectral data cube in the
spatial and spectral domains simultaneously. The developed
super-resolution staring hyperspectral imager was shown to

provide promising image quality using the cost-effective low-
resolution detectors.

APPENDIX A: PROOF OF EQ. (5)

The proof of the first inequality in Eq. (5) is as follows:

μ̄ϒ � max
~ψ j∈ϒ

Efjh~ϕi, ~ψ jij2g >
1

θ2max

max
~ψ j∈ϒ

Efjh~ϕi, ~ψ jθjij2g

>
1

K 2θ2max

max
~ψ j∈ϒ

E
�����
�
~ϕi,
XK
j�1

~ψ jθj

	����
2�

>
1

LK 2θ2max

E
�XL

i�1

jh~ϕi, ~X ij2
�

� 1

LK 2θ2max

EfjjΦ ~X jj22g, (A1)

where θj is the jth element in the coefficient vector ~Θ. In the
above equation,

kΦ ~X k22 �
1

4N

�XL∕2
i�1

�XN
j�1

�sgn�~Sj − Λi,j� � 1� ~X j

�2

�
XL

i�L∕2�1

�XN
j�1

�1 − sgn�~Sj − Λi,j�� ~X j

�2�
: (A2)

For each i, define

�Δi�1 �
"XN

j�1

sgn�~Sj − Λi,j� ~X j

#
2

�
 XN

j�1

~X j

!
2

� 2
XN
j�1

sgn�~Sj − Λi,j� ~X j ·
XN
r�1

~X r , i ≤ L∕2,

(A3)

�Δi�2 �
�XN
j�1

sgn�~Sj − Λi,j� ~X j

�2
�

XN

j�1

~X j

�2

− 2
XN
j�1

sgn�~Sj − Λi,j� ~X j ·
XN
r�1

~X r , L∕2 < i ≤ L:

(A4)

Then, we can get

EfkΦ ~X k22g � E
�

1

4N

�XL∕2
i�1

�Δi�1 �
XL

i�L∕2�1

�Δi�2
��

� 1

4N

�
L
2
E ��Δi�1� �

L
2
E ��Δi�2�

�

� L
8N

fE ��Δi�1� � E ��Δi�2�g: (A5)

In addition, we define

T 1 � ~X r
~X j�Pr�Λ 0

i,r < ~X r�Pr�Λ 0
i,j < ~X j�

� Pr�Λ 0
i,r > ~X r�Pr�Λ 0

i,j > ~X j��,
T 2 � ~X r

~X j�Pr�Λ 0
i,r > ~X r�Pr�Λ 0

i,j < ~X j�
� Pr�Λ 0

i,r < ~X r�Pr�Λ 0
i,j > ~X j��, (A6)
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where Λ 0
i,j � �Λi,j − ~εj� ∼N �μ, σ2Λ � σ2X �, and Pr�·� means

the probability of the argument. Then, we can calculate the
mathematical expectation of �Δi�1 and �Δi�2 as

E ��Δi�1��2k ~X k22�
XN
r�1

XN
j�1,j≠r

�T 1−T 2��
XN
r�1

XN
j�1,j≠r

~X r
~X j

�2


XN
r�1

~X r

�
·
XN
j�1

~X j�Pr�Λ 0
i,j < ~X j�−Pr�Λ 0

i,j > ~X j��,

(A7)

E ��Δi�2��2k ~X k22�
XN
r�1

XN
j�1,j≠r

�T 1−T 2��
XN
r�1

XN
j�1,j≠r

~X r
~X j

�2


XN
r�1

~X r

�
·
XN
j�1

~X j�Pr�Λ 0
i,j < ~X j�−Pr�Λ 0

i,j > ~X j��:

(A8)

Thus, Eq. (A7) and Eq. (A8) can be written as

E ��Δi�1� � 2kX k22 � 2
XN
j�1

~X 2
j

�
1 − 2Q



~X 0
j∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q ��

� 2
XN
r�1

XN
j�1, j≠r

~X r
~X j

�
1 − 2Q



~X 0
r∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q ��

�
XN
r�1

XN
j�1, j≠r

~X r
~X j

�
1 − 2Q



~X 0
r∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q �

− 2Q


~X 0
j∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q �

� 4Q


~X 0
r∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q �
Q


~X 0
j∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q ��

�
XN
r�1

XN
j�1, j≠r

~X r
~X j, (A9)

E ��Δi�2� � 2kX k22 − 2
XN
j�1

~X 2
j

�
1 − 2Q



~X 0
j∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q ��

− 2
XN
r�1

XN
j�1, j≠r

~X r
~X j

�
1 − 2Q



~X 0
r∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q ��

�
XN
r�1

XN
j�1, j≠r

~X r
~X j

�
1 − 2Q



~X 0
r∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q �

− 2Q


~X 0
j∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q �

� 4Q


~X 0
r∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q �
Q


~X 0
j∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q ��

�
XN
r�1

XN
j�1, j≠r

~X r
~X j, (A10)

where ~X 0 � ~X − μX , and the Q-function is defined
as Q�x� � R�∞

x �1∕ ffiffiffiffiffi
2π

p � · exp�−t2∕2�dt .

Substituting Eq. (A9) and Eq. (A10) into Eq. (A5), we
can get
E ��Δi�1� � E ��Δi�2�

� 4k ~X k22 � 2
XN
r�1

XN
j�1, j≠r

~X r
~X j

�
1 − 2Q



~X 0
j∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q �

− 2Q


~X 0
r∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q �

� 4Q


~X 0
j∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q �
Q


~X 0
r∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q ��

� 2
XN
r�1

XN
j�1, j≠r

~X r
~X j: (A11)

Let τj � Q� ~X 0
j∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

p
�, and then τj ∈ �0, 1�. The term

inside the brackets in Eq. (A11) can be abbreviated as
1 − 2τr − 2τj � 4τrτj � �1 − 2τr��1 − 2τj�. It is easy to prove
that

1 − 2τr − 2τj � 4τrτj > −1: (A12)

As stated in Section 2, the elements in ~X are non-negative, so
we have E ��Δi�1� � E ��Δi�2� > 4k ~X k22. Then, we have
EfkΦ ~X k22g > L

2N k ~X k22. Substituting this inequality into
Eq. (A1), we get

μ̄ϒ � max
~ψ j∈ϒ

Efjh~ϕi, ~ψ jij2g >
k ~X k22

2NK 2θ2max

: (A13)

The proof of the second approximate equality in Eq. (5) is as

follows. Let ~̂ϕ and ~̂ψ be the vectors that maximize the math-
ematical expectation, and Λ̂ is the corresponding threshold.
Then, we need to discuss the following two cases.

First case: if ~ϕij � �1� sgn�~Sj − Λij��∕�2
ffiffiffiffiffi
N

p �, then we
have

μ̄ϒ̄ � 1

4N
Efjh�sgn� ~X − Λ̂� � 1�, ~̂ψij2g

� 1

4N
E
�XN

p�1

�sgn� ~X p − Λ̂p� � 1� ~̂ψ p

�2

� 1

4N

XN
m�1

XN
n�1

~̂ψm ~̂ψn·

Ef�sgn� ~X m − Λ̂m� � 1� �sgn� ~X n − Λ̂n� � 1�g

� 1

4N

XN
m�1

XN
n�1

~̂ψm ~̂ψn ·
�
4 − 4Q



~X 0
m∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q �

− 4Q


~X 0
n∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q �

� 4Q


~X 0
m∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q �
Q


~X 0
n∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

q ��
:

(A14)

When the argument of the Q-function is much smaller than 1,
we have

Q�x� ≈ 1

2
−

1ffiffiffiffiffi
2π

p x: (A15)
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Based on Eq. (A15) and the assumptions of
j ~X 0

m∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

p
j ≪ 1 and j ~X 0

n∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Λ � σ2X

p
j ≪ 1,

μ̄ϒ̄ � max
~ψ j∈ϒ̄

Efjh~ϕi, ~ψ jij2g

≈
1

4N

�XN
m�1

XN
n�1

~̂ψm ~̂ψn �
XN
m�1

XN
n�1

~̂ψn

ffiffiffi
2

p ~X 0
m ~̂ψmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π�σ2Λ � σ2X �
p

�
XN
m�1

XN
n�1

~̂ψm

ffiffiffi
2

p ~X 0
n ~̂ψnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π�σ2Λ � σ2X �
p

�
XN
m�1

XN
n�1

2 ~X 0
m ~̂ψm

~X 0
n ~̂ψn

π�σ2Λ � σ2X �

�
: (A16)

Due to ~ψ j ∈ ϒ̄, it means that ~ψ j is orthogonal to ~X 0 � μX .
Hence,

μ̄ϒ̄ ≈
1

4N

"XN
m�1

XN
n�1

~̂ψm ~̂ψn −
2
ffiffiffi
2

p
μXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π�σ2Λ � σ2X �
p XN

m�1

XN
n�1

~̂ψm ~̂ψn

� 2μ2X
π�σ2Λ � σ2X �

XN
m�1

XN
n�1

~̂ψm ~̂ψn

#

� 1

4N

�� ffiffiffi
2

p
μXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π�σ2Λ � σ2X �
p − 1

�XN
m�1

~̂ψm

�2

: (A17)

Second case: if ~ϕij � �1 − sgn�~Sj − Λij��∕�2
ffiffiffiffiffi
N

p �, according to
the same derivation as the first case, we can get

μ̄ϒ̄ ≈
1

4N

�� ffiffiffi
2

p
μXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π�σ2Λ � σ2X �
p � 1

�XN
m�1

~̂ψm

�2

: (A18)

In conclusion,

μ̄ϒ̄ ≈
1

4N

�� ffiffiffi
2

p
μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π�σ2Λ � σ2X �
p 	 1

�XN
m�1

~̂ψm

�2

: (A19)

APPENDIX B: PROOF OF EQ. (6)

For the 2D image I ∈ RNx×Ny , we have vec�I� � Ψ~Θ.
Compared to Eq. (3), vec�I� can be regarded as the original
signal ~X . If the 2D-IDCT basis is employed as the sparse basis,
then Ψ ∈ R�Nx ·Ny�×�Nx ·Ny� is given by Ψ � Ω1 ⊗ Ω2, where
Ω1 ∈ RNx×Nx andΩ2 ∈ RNy×Ny are the 1D-IDCT transforma-
tion matrices, and ⊗ represents the Kronecker product.

For convenience, assume that Nx � Ny � n and n2 � N .
In particular, if Nx ≠ N y, we can take the square block
on the image and perform IDCT transformation on it in
sequence. Now denote the 1D-IDCT basis Ω �
�~ω1, ~ω2,…, ~ωn� ∈ Rn×n; thus we can formulate the 2D-IDCT
basis Ψ ∈ RN×N as

Ψ � Ω ⊗ Ω �

2
64
ω11Ω … ω1nΩ
..
. . .

. ..
.

ωn1Ω … ωnnΩ

3
75: (B1)

From the above equation, the sum of each column of Ψ can be
written by

XN
i�1

~ψ ij �
Xn
k�1

Xn
l�1

ωldj∕neωk�j−bj∕nc·n�, (B2)

where ~ψ ij is the element of Ψ in the ith row and jth column.
Therefore, we should first analyze each element in the 1D-

IDCT basis before discussing the sum of ~ψ ij. The element ofΩ
in the kth row and jth column can be expressed as

ωkj �
8<
:

1ffiffi
n

p if j � 1ffiffi
2
n

q
cos

�2k−1��j−1�π
2n if j > 1

: (B3)

When j > 1, Xn
k�1

cos
�2k − 1��j − 1�π

2n
� 0: (B4)

The proof of the above equation is presented below.
Denote a � j − 1 is a positive integer, and thenPn

k�1 cos
�2k−1��j−1�π

2n �Pn
k�1 cos

�2k−1�aπ
2n . According to the

Euler’s formula, the equation can be written asXn
k�1

cos
�2k − 1�aπ

2n
� Re

�Xn
k�1

exp

��2k − 1�aπi
2n

��

� Re

�
exp



−
aπi
2n

�Xn
k�1

exp



kaπi
n

��
,

(B5)

where Re�·� denotes the real part of a complex number, and
exp �kaπin � �k � 1, 2,…n� is a geometric progression with
common ratio of exp�aπin �. Then, the sum of the geometric
progression is

Xn
k�1

exp



kaπi
n

�
� exp



aπi
n

� 1 −
h
exp
�
aπi
n


in
1 − exp

�
aπi
n



� exp



aπi
n

�
1 − exp

�
aπi
n



1 − exp

�
aπi
n


 : (B6)

If a is an even number, exp�aπi� � 1. Substituting Eq. (B6)
into Eq. (B5), then Eq. (B5) equals zero. If a is an odd number,
exp�aπi� � −1. Substituting Eq. (B6) into Eq. (B5), then the
part in the brackets of the last term in Eq. (B5) equals

exp



−
aπi
2n

�Xn
k�1

exp



kaπi
n

�

� exp



−
aπi
2n

�
· exp



aπi
n

�
1 − exp�aπi�
1 − exp

�
aπi
n



� exp



aπi
2n

�
2

1 − exp
�
aπi
n


 : (B7)

Using the Euler’s formula again, Eq. (B7) can be written
as exp�− aπi

2n�
Pn

k�1 exp�kaπin � � i∕ sin aπ
2n.

The real part of exp�− aπi
2n�
Pn

k�1 exp�kaπin � is zero, which
means

Pn
k�1 cos

�2k−1�aπ
2n � 0. So,Xn

i�1

ωij � 0, for ∀ j > 1: (B8)

408 Vol. 8, No. 3 / March 2020 / Photonics Research Research Article



Substituting Eq. (B3) and Eq. (B8) into Eq. (B2), we find that

XN
i�1

ψ ij �
� ffiffiffiffiffi

N
p

if j � 1
0 if j > 1

: (B9)

When ~ψ j ∈ ϒ̄, it means θj � ~ψ j
~X � 0. Since every element in

~X and ~ψ1 is non-negative, it is easy to know when j � 1, the
corresponding sparse coefficient θ1 � ~ψ1

~X > 0, then ~ψ1 ∉ ϒ̄.
Therefore, we can draw a conclusion that

XN
j�1

~ψ j � 0 if ~ψ j ∈ ϒ̄: (B10)

Substituting Eq. (B10) into Eq. (5), then we can derive Eq. (6).

APPENDIX C: SUMMARY OF THE COMPARISON
AMONG DIFFERENT METHODS USING THE
EXPERIMENTAL TESTBED

Table 2 provides a side-by-side comparison among different
methods using the experimental testbed in Section 5, including
the conventional system, and the proposed system using ran-
dom coded apertures and TACS coded apertures. The premise
of calculating the PSNR is that the sizes of the images stay iden-
tical. However, the spectral images acquired by the conven-
tional system and the proposed system are of different sizes,
thus the PSNR is not given here. Instead, PSNRs of the recon-
structed images corresponding to the original high-resolution
images are computed. For the conventional system, it takes
24 snapshots to tune the LCTF to obtain 24 spectral channels.
While 24 × 12 � 288 snapshots are required for the proposed
system using random coded apertures. In particular, for the
TACS coding method, additional 4 × 32 � 128 snapshots
are required to obtain four reference spectral images before-
hand, each of which is modulated by 32 random coded
aperture patterns. Although the number of snapshots for the
TACS method has increased, we can use a detector of 50 × 50
pixels to acquire images of 400 × 400 pixels. In addition, the

reconstruction quality is improved compared to random coded
apertures. Note that the time to collect the full data for using
the TACS method includes the time to observe and reconstruct
four reference channels, as well as the time to calculate four sets
of TACS coded apertures corresponding to the four sub-
groups. The optical efficiency of the conventional system is
mainly determined by the transmittance of the LCTF. For
compressive imaging systems, the optical efficiency is also af-
fected by the transmittance of the DMD. The ratio of block/
unblock micromirrors is almost 1:1 for both TACS and ran-
dom coded aperture patterns. Thus, the transmittance of the
DMD is about 50%, and the optical efficiency of the proposed
compressive system using TACS coded apertures and random
coded apertures is almost the same. Furthermore, it is about
50% of that of the conventional system. But the difference will
not be huge, because the LCTF has a relatively low transmit-
tance due to an inherent defect of the narrowband filter device.

APPENDIX D: SUMMARY OF THE COMPARISON
AMONG THE THREE CODING METHODS

Table 3 summarizes the comparison among the three coding
methods, including the single-channel random coding method,
single-channel TACS coding method, and multi-channel
TACS coding method. In Section 6, the original data cube con-
sists of 24 spectral images with spatial resolution of 256 × 256
pixels, and 12 snapshots are used to obtain the measurements
using different coding methods. For the single-channel method
with random coded apertures and TACS coded apertures, the
number of snapshots has been introduced in Appendix C. As
for the multi-channel TACS method, three spectral channels
are captured during each integration time interval, and
24∕3 × 12 � 96 snapshots are required. By adding additional
4 × 32 � 128 snapshots to obtain four reference spectral im-
ages, the total number becomes 224. As shown in Table 3,
the multi-channel TACS method has reduced the number
of snapshots and the compression ratio, since it introduces

Table 2. Comparison Among Different Methods Using the Experimental Testbed, Including the Conventional System,
and Our System Using Random Coded Apertures and TACS Coded Apertures

Method
Spatial Resolution

(pixels)
Average

PSNR (dB)
Number of
Snapshots

Time to
Collect the
Full Data (s)

Compression
Ratio Optical Efficiency

Conventional 50 × 50 24 10 Mainly determined by the
transmittance of LCTF

Random 400 × 400 20.59 288 115 0.1875 Mainly determined by the
transmittance of LCTF and DMD

TACS 400 × 400 23.80 416 166 0.1875 Mainly determined by the transmittance
of LCTF and DMD

Table 3. Comparison Among the Three Coding Methods, Including the Single-Channel Random Coding Method, Single-
Channel TACS Coding Method, and Multi-Channel TACS Coding Method

Method Spatial Resolution (pixels) Average PSNR (dB) Number of Snapshots Compression Ratio

Single-channel random 256 × 256 26.33 288 0.1875
Single-channel TACS 256 × 256 31.14 416 0.1875
Multi-channel TACS 256 × 256 28.98 224 0.0625
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the spectral compression. Although the reconstruction perfor-
mance is inferior to the single-channel method with TACS
coded apertures, it is still superior to the single-channel random
coding method, while the latter does not conduct spectral
compression.
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