• Journal of Semiconductors
  • Vol. 41, Issue 4, 042601 (2020)
Jinyu Yang1, Yang Wang1, Lu Wang1, Ziao Tian2, Zengfeng Di2, and Yongfeng Mei1
Author Affiliations
  • 1Department of Material Science, Fudan University, Shanghai 200433, China
  • 2Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 20050, China
  • show less
    DOI: 10.1088/1674-4926/41/4/042601 Cite this Article
    Jinyu Yang, Yang Wang, Lu Wang, Ziao Tian, Zengfeng Di, Yongfeng Mei. Tubular/helical architecture construction based on rolled-up AlN nanomembranes and resonance as optical microcavity[J]. Journal of Semiconductors, 2020, 41(4): 042601 Copy Citation Text show less
    References

    [1] I Vurgaftman, J R Meyer, L R Ram-Mohan. Band parameters for III–V compound semiconductors and their alloys. J Appl Phys, 89, 5815(2001).

    [2] L W Li, Y Bando, Y C Zhu et al. Single-crystalline AlN nanotubes with carbon-layer coatings on the outer and inner surfaces via a multiwalled-carbon-nanotube-template-induced route. Adv Mater, 17, 213(2005).

    [3] C R Bowen, H A Kim, P M Weaver et al. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci, 7, 25(2013).

    [4] B J Zheng, W Hu. Cubic AlN thin film formation on quartz substrate by pulse laser deposition. J Semicond, 37, 063003(2016).

    [5] N Sinha, G E Wabiszewski, R Mahameed et al. Piezoelectric aluminum nitride nanoelectromechanical actuators. Appl Phys Lett, 95, 053106(2009).

    [6] C Xiong, W H P Pernice, X Sun et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J Phys, 14, 095014(2012).

    [7] S Longhi, L Feng. Unidirectional lasing in semiconductor microring lasers at an exceptional point. Photonics Res, 5, B1(2017).

    [8] M Bürger, M Ruth, S Declair et al. Whispering gallery modes in zinc-blende AlN microdisks containing non-polar GaN quantum dots. Appl Phys Lett, 102, 081105(2013).

    [9] J Wang, T Zhan, G Huang et al. Optical microcavities with tubular geometry: properties and applications. Laser Photonics Rev, 8, 521(2014).

    [10] X Lin, Y Fang, L Zhu et al. Self-rolling of oxide nanomembranes and resonance coupling in tubular optical microcavity. Adv Opt Mater, 4, 936(2016).

    [11] T Kipp, H Welsch, C Strelow et al. Optical modes in semiconductor microtube ring resonators. Phys Rev Lett, 96, 077403(2006).

    [12] G Huang, Y Mei. Assembly and self-assembly of nanomembrane materials—from 2D to 3D. Small, 14, 1703665(2018).

    [13] Z Tian, L Zhang, Y Fang et al. Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture. Adv Mater, 29, 1604572(2017).

    [14] G S Huang, Y F Mei, F Cavallo et al. Fabrication and optical properties of C/β-SiC/Si hybrid rolled-up microtubes. J Appl Phys, 105, 016103(2009).

    [15] X Yu, W Huang, M Li et al. Ultra-small, high-frequency, and substrate-immune microtube inductors transformed from 2D to 3D. Sci Rep, 5, 9661(2015).

    [16] Y Fang, Xn Li, S Tang et al. Temperature-dependent optical resonance in a thin-walled tubular oxide microcavity. Prog Nat Sci Mater, 27, 498(2017).

    [17] C Yan, W Xi, W Si et al. Highly conductive and strain-released hybrid multilayer Ge/Ti nanomembranes with enhanced lithium-ion-storage capability. Adv Mater, 25, 539(2013).

    [18] J Kim, U Choi, J Pyeon et al. Deep-ultraviolet AlGaN/AlN core-shell multiple quantum wells on AlN nanorods via lithography-free method. Sci Rep, 8, 935(2018).

    [19] G Huang, Y Mei. Thinning and shaping solid films into functional and integrative nanomembranes. Adv Mater, 24, 2517(2012).

    [20] M Akiyama, Y Morofuji, T Kamohara et al. Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J Appl Phys, 1143185(2006).

    [21] C Zhao, K E Knisely, D J Colesa et al. Voltage readout from a piezoelectric intracochlear acoustic transducer implanted in a living guinea pig. Sci Rep, 9, 3711(2019).

    [22] N Ledermann, P Muralt, J Baborowski et al. Piezoelectric Pb(Zrx, Ti1x)O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors. J Micromech Microeng, 14, 1650(2004).

    [23] P Froeter, X Yu, W Huang et al. 3D hierarchical architectures based on self-rolled-up silicon nitride membranes. Nanotechnology, 24, 475301(2013).

    [24] B W Dodson, J Y Tsao. Relaxation of strained-layer semiconductor structures via plastic flow. Appl Phys Lett, 51, 1325(1987).

    [25] H J Trodahl, F Martin, P Muralt et al. Raman spectroscopy of sputtered AlN films: E2 (high) biaxial strain dependence. Appl Phys Lett, 89, 061905(2006).

    [26] I Yonenaga, T Shima, M H F Sluiter. Nano-indentation hardness and elastic moduli of bulk single-crystal AlN. Jpn J Appl Phys, 41, 4620(2002).

    [27] M Kuball, J M Hayes, A D Prins et al. Raman scattering studies on single-crystalline bulk AlN under high pressures. Appl Phys Lett, 78, 724(2001).

    [28] Y Tang, H Cong, F Li et al. Synthesis and photoluminescent property of AlN nanobelt array. Diamond Relat Mater, 16, 537(2007).

    [29] Y G Cao, X L Chen, Y C Lan et al. Blue emission and Raman scattering spectrum from AlN nanocrystalline powders. J Cryst Growth, 213, 198(2000).

    [30] J Wang, E Song, C Yang et al. Fabrication and whispering gallery resonance of self-rolled up gallium nitride microcavities. Thin Solid Films, 627, 77(2017).

    [31] J Wang, T Zhang, G Huang et al. Tubular oxide microcavity with high-indexcontrast walls: Mie scattering theory and 3D confinement of resonant modes. Opt Express, 20, 18555(2012).

    Jinyu Yang, Yang Wang, Lu Wang, Ziao Tian, Zengfeng Di, Yongfeng Mei. Tubular/helical architecture construction based on rolled-up AlN nanomembranes and resonance as optical microcavity[J]. Journal of Semiconductors, 2020, 41(4): 042601
    Download Citation