• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 6, 671 (2020)
Jia-Bin LI, Xiao-Hua WANG, and Wen-Jie WANG*
Author Affiliations
  • School of Electronics and Information, Xi'an Polytechnic University, Xi'an710048, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.06.002 Cite this Article
    Jia-Bin LI, Xiao-Hua WANG, Wen-Jie WANG. Modulation of the optical properties of GaN(0001) surface by metal atom adsorption[J]. Journal of Infrared and Millimeter Waves, 2020, 39(6): 671 Copy Citation Text show less
    References

    [1] D K T Ng, M H Hong, L S Tan. Field emission enhancement from patterned gallium nitride nano- wires. Nanotechnol, 18, 375707(2007).

    [2] E Li, Z Cui, Y Dai. Synthesis and field emission properties of GaN nanowires. Appl. Surf. Sci, 257, 10850(2011).

    [3] G Nabi, C B Cao, S Husain. Synthesis, photoluminescence and field emission properties of well aligned/well patterned conical shape GaN nanorods. Cryst. Eng. Comm, 14, 8492(2012).

    [4] Z Cui, E Li. . Growth and field emission properties of GaN nanopencils. Ceram. Int, 41, 6074(2015).

    [5] Z Cui, X Ke, E Li. Electronic and optical properties of titanium-doped GaN nanowires. Mater. Des, 96, 409(2016).

    [6] B Li, B Chang. . Research and development of GaN photocathode. Acta Phys. Sin, 60, 088503(2011).

    [7] Y H Li, H H Pan, P S Xu. First-principle study on GaN(1010) surface structure. Acta Phys. Sin, 54, 317(2005).

    [8] Y J Du, B K Chang, X Q Fu. Electronic structure and optical properties of zinc-blende GaN. Optik, 123, 2208-2212(2012).

    [9] Y Wang. J, Lu W. AlGaN/GaN FET for DNA hybridization detection. Phys. Status Solidi, 208, 1623-1625(2011).

    [10] L Pang, K Kim. Bimodal gate-dielectric deposition for improved performance of AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors. . Phys, 45, 045105(2012).

    [11] C S Hsu, H I Chen, C F Chang. On the hydrogen sensing characteristics of a Pd/AlGaN/GaN heterostructure field-effect transistor (HFET). Sens. Actuators B, 165, 19-23(2012).

    [12] A H Bar-Llan, S Zamir, O Katz. GaN layer growth optimization for high power devices. Mater. Sci. Eng, 302, 14-17(2001).

    [13] T Q Nguyen, H A Shih, M Kudo. Appl. Phys, 51, 19-23(2012).

    [14] D S Kim, K S Im, H S Kang. Appl. Phys, 51, 4101(2012).

    [15] C I Wu, A J Kahn. Electronic states and effective negative electron affinity at cesiated p-GaN surfaces. Appl. Phys, 86, 3209-3212(1999).

    [16] F Machuca, Y Sun, Z Liu. Role of oxygen in semiconductor negative electron affinity photocathodes. . Vac. Sci. Technol, 20, 2721-2725(2002).

    [17] T Maruyama, A Brachmann, J E Clendenin. Nucl. Instrum. A very high charge, high polarization gradient-doped strained GaAs photocathode. Methods Phys. Res. Sect, 492, 199-211(2002).

    [18] O Siegmund, J Vallerga, J Mcphate. Development of GaN photocathodes for UV detectors. Nucl. Instrum. Methods Phys. Res. Sect, 567, 89-92(2006).

    [19] C X Gao, F C Yu, A R Choi. A comparative study on Be and Mg doping in GaN films grown using a single GaN precursor via molecular beam epitaxy. . Cryst. Growth, 291, 60-65(2006).

    [20] A Kawaharazuka, T Tanimoto, K Nagai. Be and Mg co-doping in GaN. . Cryst. Growth, 301-302, 414-416(2007).

    [21] S Li, C Mo, L Wang. The influence of Si-doping to the growth rate and yellow luminescence of GaN grown by MOCVD. J. Funct. Mater. Devices, 93, 321-326(2001).

    [22] Y Furuhashi, S Yoshida, D Ozaki. Electrical properties of n-type layers formed in GaN by Si implantation. Nucl. Instrum. Methods Phys. Res. Sect, 242, 633-636(2006).

    [23] D Li, B Ma, R Miyagawa. Photoluminescence study of Si-doped a-plane GaN grown by MOVPE. . Cryst. Growth, 311, 2906-2909(2009).

    [24] Y J Ji, Y J Du, M H Wang. First-principles studies of electronic structure and optical properties of GaN surface doped with Si. Optik, 125, 2234-2238(2014).

    [25] A Svane, N E Christensen, L Petit. Electronic structure of rare-earth impurities in GaAs and GaN. Phys. Rev, 165204(74).

    [26] S Sanna, W Schmidt. . Rare-earth defect pairs in GaN: LDA+ U calculations. Phys. Rev, 80, 104120(2009).

    [27] H W K Tom, C M Mate, X D Zhu. Studies of alkali adsorption on Rh(111) using optical second-harmonic generation. Surf. Sci, 172, 466-476(1986).

    [28] A Kiejna, T Ossowski, E Wachowicz. Alkali metals adsorption on the Mg(0001) surface. Surf. Sci, 548, 22-28(2004).

    [29] K H Jin, S M Choi, S Jhi. H. Crossover in the adsorption properties of alkali metals on graphene. : Condens. Matter, 82, 033414(2010).

    [30] H Sahin, F M Peeters. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene. : Condens. Matter, 87, 218-224(2013).

    [31] M Sun, W Tang, Q Ren. First-principles study of the alkali earth metal atoms adsorption on graphene. Appl. Surf. Sci, 356, 668-673(2015).

    [32] S Xia. . Study of Cs adsorption on (100) surface of [001]-oriented GaN nanowires: A first principle research. Appl. Surf. Sci, 387, 1110-1115(2016).

    [33] G V Benemanskaya, V S Vikhnin, N M Shmidt. Electron accumulation layer at the Cs-covered GaN(0001) n-type surface. Appl. Phys. Lett, 85, 1365-1367(2004).

    [34] Y J Du, B K Chang, X H Wang. Theoretical study of Cs adsorption on GaN (0 0 0 1) surface. Appl. Surf. Sci, 258, 7425(2012).

    [35] Z G Wang, C L Zhang, J B Li. Weber. First principles study of electronic properties of gallium nitride nanowires grown along different crystal directions. Comput. Mater. Sci, 50, 344-348(2010).

    [36] T U Kampen, M Eyckelerr, W Monch. Electronic properties of cesium-covered GaN(0001) surfaces. Appl. Surf. Sci, 123-124, 28-32(1998).

    [37] R Gonzalez-Hernandez, W Lopez-Perez. Vanadium adsorption and incorporation at the GaN(0001) surface: A first-principles study. Rev, 195407(81).

    Jia-Bin LI, Xiao-Hua WANG, Wen-Jie WANG. Modulation of the optical properties of GaN(0001) surface by metal atom adsorption[J]. Journal of Infrared and Millimeter Waves, 2020, 39(6): 671
    Download Citation