• Laser & Optoelectronics Progress
  • Vol. 59, Issue 9, 0922019 (2022)
Junhao Zhu1, Shengtong Wang1, and Xinghui Li1、2、*
Author Affiliations
  • 1Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong , China
  • 2Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong , China
  • show less
    DOI: 10.3788/LOP202259.0922019 Cite this Article Set citation alerts
    Junhao Zhu, Shengtong Wang, Xinghui Li. Ultraprecision Grating Positioning Technology for Wafer Stage of Lithography Machine[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922019 Copy Citation Text show less
    References

    [2] Chi F, Zhu Y, Zhang Z P et al. Environment compensation technologies in dual-frequency laser interferometer measurement system[J]. Chinese Journal of Lasers, 41, 0408004(2014).

    [3] Lee J Y, Jiang G G. Displacement measurement using a wavelength-phase-shifting grating interferometer[J]. Optics Express, 21, 25553-25564(2013).

    [4] Ye W N, Zhang M, Zhu Y et al. Real-time displacement calculation and offline geometric calibration of the grating interferometer system for ultra-precision wafer stage measurement[J]. Precision Engineering, 60, 413-420(2019).

    [5] Bryan J B. The Abbé principle revisited: an updated interpretation[J]. Precision Engineering, 1, 129-132(1979).

    [6] Zheng F J, Feng Q B, Zhang B et al. A method for simultaneously measuring 6DOF geometric motion errors of linear and rotary axes using lasers[J]. Sensors, 19, 1764(2019).

    [7] Straube G, Fischer Calderón J S, Ortlepp I et al. A heterodyne interferometer with separated beam paths for high-precision displacement and angular measurements[J]. Nanomanufacturing and Metrology, 4, 200-207(2021).

    [8] Leach R. Abbe Error/offset[M]. CIRP encyclopedia of production engineering(2014).

    [9] Schmidt R H M. Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 370, 3950-3972(2012).

    [10] Castenmiller T, van de Mast F, de Kort T et al. Towards ultimate optical lithography with NXT: 1950i dual stage immersion platform[J]. Proceedings of SPIE, 7640, 623-634(2010).

    [11] Yao S X, Dong X G, Yuan W et al. The study of overlay mark in self aligned double patterning and solution[C](2015).

    [12] IEEE. International Roadmap for Devices and Systems (IRDS)[EB/OL]. https://irds.ieee.org/editions

    [13] van Herpen R, Oomen T, Kikken E et al. Exploiting additional actuators and sensors for nano-positioning robust motion control[J]. Mechatronics, 24, 619-631(2014).

    [14] Voorhoeve R, de Rozario R, Aangenent W et al. Identifying position-dependent mechanical systems: a modal approach applied to a flexible wafer stage[J]. IEEE Transactions on Control Systems Technology, 29, 194-206(2021).

    [15] Yang R D, Bi Y F, Zhou Q et al. A background reduction method based on empirical mode decomposition for tunable diode laser absorption spectroscopy system[J]. Optik, 158, 416-423(2018).

    [16] Chen B Y, Zhang E Z, Yan L P et al. A laser interferometer for measuring straightness and its position based on heterodyne interferometry[J]. The Review of Scientific Instruments, 80, 115113(2009).

    [17] Chen B Y, Mu R Z, Zhou Y J et al. Nonlinear error analysis of laser synthetic-wavelength nanomeasurement interferometer[J]. Chinese Journal of Lasers, 35, 240-244(2008).

    [18] Gao W, Kim S W, Bosse H et al. Measurement technologies for precision positioning[J]. CIRP Annals, 64, 773-796(2015).

    [19] Shimizu Y, Chen L C, Kim D W et al. An insight on optical metrology in manufacturing[J]. Measurement Science and Technology, 32, 042003(2020).

    [20] Yu H Y, Chen X L, Liu C J et al. A survey on the grating based optical position encoder[J]. Optics & Laser Technology, 143, 107352(2021).

    [21] Hu P C, Chang D, Tan J B et al. Displacement measuring grating interferometer: a review[J]. Frontiers of Information Technology & Electronic Engineering, 20, 631-654(2019).

    [22] Gao W, Kimura A. A three-axis displacement sensor with nanometric resolution[J]. CIRP Annals, 56, 529-532(2007).

    [23] Kimura A, Gao W, Kim W et al. A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement[J]. Precision Engineering, 36, 576-585(2012).

    [24] Feng C, Zeng L J, Wang S W. Heterodyne planar grating encoder with high alignment tolerance, especially insensitivity to grating tilts[J]. Proceedings of SPIE, 8759, 87593L(2013).

    [25] Lee J Y, Chen H Y, Hsu C C et al. Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution[J]. Sensors and Actuators A: Physical, 137, 185-191(2007).

    [26] Wu C C, Hsu C C, Lee J Y et al. Optical heterodyne laser encoder with sub-nanometer resolution[J]. Measurement Science and Technology, 19, 045305(2008).

    [27] Wu C C, Hsu C C, Lee J Y et al. Heterodyne common-path grating interferometer with Littrow configuration[J]. Optics Express, 21, 13322-13332(2013).

    [28] de Vine G, Rabeling D S, Slagmolen B J J et al. Picometer level displacement metrology with digitally enhanced heterodyne interferometry[J]. Optics Express, 17, 828-837(2009).

    [29] Yang H X, Yin Z Q, Yang R T et al. Design for a highly stable laser source based on the error model of high-speed high-resolution heterodyne interferometers[J]. Sensors, 20, 1083(2020).

    [30] Yokoyama S, Yokoyama T, Araki T. High-speed subnanometre interferometry using an improved three-mode heterodyne interferometer[J]. Measurement Science and Technology, 16, 1841-1847(2005).

    [31] Fu H J, Ji R D, Hu P C et al. Measurement method for nonlinearity in heterodyne laser interferometers based on double-channel quadrature demodulation[J]. Sensors, 18, 2768(2018).

    [32] Yokoyama S, Hori Y, Yokoyama T et al. A heterodyne interferometer constructed in an integrated optics and its metrological evaluation of a picometre-order periodic error[J]. Precision Engineering, 54, 206-211(2018).

    [33] Teimel A. Technology and applications of grating interferometers in high-precision measurement[J]. Precision Engineering, 14, 147-154(1992).

    [35] Wang L J, Zhang M, Zhu Y et al. A displacement measurement system for ultra-precision heterodyne Littrow grating interferometer[J]. Optics and Precision Engineering, 25, 2975-2985(2017).

    [36] Xia H J. Research on precise 2-D plane grating measurement system and key technology[D], 51-76(2006).

    [37] HEIDENHAIN KGM. 282 grid encoder[EB/OL]. https://www.heidenhain.com/products/testing-and-inspection-devices/testing-of-machine-tools

    [38] Li X H, Wang H H, Ni K et al. Two-probe optical encoder for absolute positioning of precision stages by using an improved scale grating[J]. Optics Express, 24, 21378-21391(2016).

    [39] Shi Y P, Ni K, Li X H et al. Highly accurate, absolute optical encoder using a hybrid-positioning method[J]. Optics Letters, 44, 5258-5261(2019).

    [40] Shi Y P, Zhou Q, Li X H et al. Design and testing of a linear encoder capable of measuring absolute distance[J]. Sensors and Actuators A: Physical, 308, 111935(2020).

    [41] Lin C B, Yan S H, Du Z G et al. High-efficiency gold-coated cross-grating for heterodyne grating interferometer with improved signal contrast and optical subdivision[J]. Optics Communications, 339, 86-93(2015).

    [42] Zhu Z B, Wu G H. Dual-comb ranging[J]. Engineering, 4, 772-778(2018).

    [43] Lin J, Guan J, Wen F et al. High-resolution and wide range displacement measurement based on planar grating[J]. Optics Communications, 404, 132-138(2017).

    [44] Lin J, Guan J, Jin P et al. Three-dimensional grating displacement measuring system with dual-frequency laser[P].

    [45] Hsieh H L, Pan S W. Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry[J]. Applied Optics, 52, 6840-6848(2013).

    [46] Gao W, Saito Y, Muto H et al. A three-axis autocollimator for detection of angular error motions of a precision stage[J]. CIRP Annals, 60, 515-518(2011).

    [47] Li X H, Gao W, Muto H et al. A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage[J]. Precision Engineering, 37, 771-781(2013).

    [48] Li X H, Shimizu Y, Ito T et al. Measurement of six-degree-of-freedom planar motions by using a multiprobe surface encoder[J]. Optical Engineering, 53, 122405(2014).

    [49] Lee C, Kim G H, Lee S K. Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage[J]. Measurement Science and Technology, 22, 105901(2011).

    [50] Hsieh H L, Pan S W. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements[J]. Optics Express, 23, 2451-2465(2015).

    [51] Yu K N, Zhu J H, Yuan W H et al. Two-channel six degrees of freedom grating-encoder for precision-positioning of sub-components in synthetic-aperture optics[J]. Optics Express, 29, 21113(2021).

    [52] Lin C B, Yan S H, Wei C H et al. Optimized design and error analysis of optical system for heterodyne grating interferometry[J]. Proceedings of SPIE, 9046, 90460C(2013).

    [53] Shimizu Y. Laser interference lithography for fabrication of planar scale gratings for optical metrology[J]. Nanomanufacturing and Metrology, 4, 3-27(2021).

    [54] Wei G[M]. Precision nanometrology(2010).

    [55] Jain K, Zemel M, Klosner M. Large-area high-resolution lithography and photoablation systems for microelectronics and optoelectronics fabrication[J]. Proceedings of the IEEE, 90, 1681-1688(2002).

    [56] Lu C, Lipson R H. Interference lithography: a powerful tool for fabricating periodic structures[J]. Laser & Photonics Reviews, 4, 568-580(2010).

    [57] Ma D H, Zeng L J. Fabrication of low-stray-light gratings by broad-beam scanning exposure in the direction perpendicular to the grating grooves[J]. Optics Letters, 40, 1346-1349(2015).

    [58] Ma D, Zhao Y, Zeng L. Achieving unlimited recording length in interference lithography via broad-beam scanning exposure with self-referencing alignment[J]. Scientific Reports, 7, 926(2017).

    [59] Shi L, Zeng L J, Li L F. Fabrication of optical mosaic gratings with phase and attitude adjustments employing latent fringes and a red-wavelength dual-beam interferometer[J]. Optics Express, 17, 21530-21543(2009).

    [60] Shi L, Zeng L J. Fabrication of optical mosaic gratings: a self-referencing alignment method[J]. Optics Express, 19, 8985-8993(2011).

    [61] Zhou H Y, Zeng L J. Optical mosaic method for orthogonally crossed gratings by utilizing information about both main periodic directions simultaneously[J]. Optics Communications, 385, 181-187(2017).

    [62] Li X H, Ni K, Zhou Q et al. Fabrication of a concave grating with a large line spacing via a novel dual-beam interference lithography method[J]. Optics Express, 24, 10759-10766(2016).

    [63] Li X H, Zhou Q, Zhu X W et al. Holographic fabrication of an arrayed one-axis scale grating for a two-probe optical linear encoder[J]. Optics Express, 25, 16028-16039(2017).

    [64] Li X H, Gao W, Shimizu Y et al. A two-axis Lloyd's mirror interferometer for fabrication of two-dimensional diffraction gratings[J]. CIRP Annals, 63, 461-464(2014).

    [65] Li X H, Lu H O, Zhou Q et al. An orthogonal type two-axis lloyd's mirror for holographic fabrication of two-dimensional planar scale gratings with large area[J]. Applied Sciences, 8, 2283(2018).

    [66] Li X H, Shimizu Y, Ito S et al. Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes[J]. International Journal of Precision Engineering and Manufacturing, 14, 1979-1988(2013).

    [67] Xue G P, Lu H O, Li X H et al. Patterning nanoscale crossed grating with high uniformity by using two-axis Lloyd’s mirrors based interference lithography[J]. Optics Express, 28, 2179-2191(2020).

    [68] Xue G, Zhai Q, Lu H et al. Polarized holographic lithography system for high-uniformity microscale patterning with periodic tunability[J]. Microsystems & Nanoengineering, 7, 31(2021).

    [69] de Jong F, van der Pasch B, Castenmiller T et al. Enabling the lithography roadmap: an immersion tool based on a novel stage positioning system[J]. Proceedings of SPIE, 7274, 608-617(2009).

    [70] Ye W N, Zhang M, Zhu Y et al. Ultraprecision real-time displacements calculation algorithm for the grating interferometer system[J]. Sensors, 19, 2409(2019).

    [71] Kang H J, Chun B J, Jang Y S et al. Real-time compensation of the refractive index of air in distance measurement[J]. Optics Express, 23, 26377-26385(2015).

    [72] Weichert C, Köchert P, Köning R et al. A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm[J]. Measurement Science and Technology, 23, 094005(2012).

    [73] Chen G H, Zhang L, Wang X J et al. Modeling method of CNC tooling volumetric error under consideration of Abbé error[J]. The International Journal of Advanced Manufacturing Technology, 119, 7875-7887(2022).

    [74] Liu H W, Xiang H, Chen J H et al. Measurement and compensation of machine tool geometry error based on Abbé principle[J]. The International Journal of Advanced Manufacturing Technology, 98, 2769-2774(2018).

    [75] Wu X P, Wei H K, Liu Z K et al. Long trace profiler for measuring groove density of diffraction gratings[J]. Acta Optica Sinica, 41, 0612002(2021).

    [76] Gao J, Jiao D D, Liu J et al. Laser linewidth measurement based on recirculating self-heterodyne method with short fiber[J]. Acta Optica Sinica, 41, 0712002(2021).

    [77] Zhang B, Yan L P, Diao X F. Effect of alignment error of wave plate array on nonlinear error of laser interference[J]. Chinese Journal of Lasers, 49, 0904003(2022).

    [78] Gao W, Kimura A. A fast evaluation method for pitch deviation and out-of-flatness of a planar scale grating[J]. CIRP Annals, 59, 505-508(2010).

    [79] Xiong X, Shimizu Y, Chen X G et al. Uncertainty evaluation for measurements of pitch deviation and out-of-flatness of planar scale gratings by a Fizeau interferometer in Littrow configuration[J]. Applied Sciences, 8, 2539(2018).

    [80] Quan L, Shimizu Y, Xiong X et al. A new method for evaluation of the pitch deviation of a linear scale grating by an optical angle sensor[J]. Precision Engineering, 67, 1-13(2021).

    [81] Yang H X, Yang R T, Hu P C et al. Ultrastable offset-locked frequency-stabilized heterodyne laser source with water cooling[J]. Applied Optics, 56, 9179-9185(2017).

    [82] Fu H J, Wang Y, Hu P C et al. Nonlinear errors resulting from ghost reflection and its coupling with optical mixing in heterodyne laser interferometers[J]. Sensors, 18, 758(2018).

    [83] Fu H J, Wang Y, Hu P C et al. Real-time compensation of nonlinearity in heterodyne interferometers based on quadrature demodulation and extremum operation[J]. Optical Engineering, 59, 044101(2020).

    [84] Hao Y W, Kong X X, Cai Q S et al. Analysis of effect of circulator noise on laser interferometry system[J]. Acta Optica Sinica, 41, 0912003(2021).

    [85] Cosijns S J A G, Haitjema H, Schellekens P H J. Modeling and verifying non-linearities in heterodyne displacement interferometry[J]. Precision Engineering, 26, 448-455(2002).

    [86] Yang Y, Deng Y, Tan Y D et al. Nonlinear error analysis and experimental measurement of Birefringence-Zeeman dual-frequency laser interferometer[J]. Optics Communications, 436, 264-268(2019).

    [87] Wu C M, Lawall J, Deslattes R D. Heterodyne interferometer with subatomic periodic nonlinearity[J]. Applied Optics, 38, 4089-4094(1999).

    [88] Zhao S J, Wei H Y, Zhu M H et al. Green laser interferometric metrology system with sub-nanometer periodic nonlinearity[J]. Applied Optics, 55, 3006-3011(2016).

    [89] Hu P C, Chen P, Diao X F et al. Highly stable heterodyne interferometer without periodic nonlinearity[J]. Tm-Technisches Messen, 81, 246-254(2014).

    [90] Xing X, Chang D, Hu P C et al. Spatially separated heterodyne grating interferometer for eliminating periodic nonlinear errors[J]. Optics Express, 25, 31384-31393(2017).

    [91] Xing X, Chang D, Hu P C et al. Spatially separated heterodyne grating interferometer for in-plane displacement measurement[J]. Optics and Precision Engineering, 27, 1727-1736(2019).

    [92] Chang D, Xing X, Hu P C et al. Double-diffracted spatially separated heterodyne grating interferometer and analysis on its alignment tolerance[J]. Applied Sciences, 9, 263(2019).

    [93] Hu P C, Tan J B, Chen P. Double frequency laser grating interference three-dimensional measurement method and system with optical aliasing resistance[P].

    Junhao Zhu, Shengtong Wang, Xinghui Li. Ultraprecision Grating Positioning Technology for Wafer Stage of Lithography Machine[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922019
    Download Citation