• Journal of Semiconductors
  • Vol. 42, Issue 4, 041303 (2021)
Swapnajit Chakravarty, Min Teng, Reza Safian, and Leimeng Zhuang
DOI: 10.1088/1674-4926/42/4/041303 Cite this Article
Swapnajit Chakravarty, Min Teng, Reza Safian, Leimeng Zhuang. Hybrid material integration in silicon photonic integrated circuits[J]. Journal of Semiconductors, 2021, 42(4): 041303 Copy Citation Text show less
References

[1] C R Doerr. Silicon photonic integration in telecommunications. Front Phys, 3, 37(2015).

[2] W Q Xie, T Komljenovic, J X Huang et al. Heterogeneous silicon photonics sensing for autonomous cars. Opt Express, 27, 3642(2019).

[3] D Marpaung, J P Yao, J Capmany. Integrated microwave photonics. Nat Photonics, 13, 80(2019).

[4] A W Elshaari, W Pernice, K Srinivasan et al. Hybrid integrated quantum photonic circuits. Nat Photonics, 14, 285(2020).

[5] L Liu, J van Campenhout, G Roelkens et al. Carrier-injection-based electro-optic modulator on silicon-on-insulator with a heterogeneously integrated III-V microdisk cavity. Opt Lett, 33, 2518(2008).

[6] G T Reed, D J Thomson, F Y Gardes et al. High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions. Front Phys, 2, 77(2014).

[7] K Debnath, D J Thomson, W W Zhang et al. All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor. Photonics Res, 6, 149(2018).

[8] C Wang, M Zhang, X Chen et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

[9] F Eltes, C Mai, D Caimi et al. A BaTiO3-based electro-optic pockels modulator monolithically integrated on an advanced silicon photonics platform. J Light Technol, 37, 1456(2019).

[10] X L Wang, C Y Lin, S Chakravarty et al. Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides. Opt Lett, 36, 882(2011).

[11] A Yariv, X K Sun. Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: A proposal and analysis. Opt Express, 15, 9147(2007).

[12] S Tanaka, S H Jeong, S Sekiguchi et al. High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology. Opt Express, 20, 28057(2012).

[13] Q Li, K M Lau. Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics. Prog Cryst Growth Charact Mater, 63, 105(2017).

[14] G Roelkens, A Abassi, P Cardile et al. III-V-on-silicon photonic devices for optical communication and sensing. IEEE Photonics J, 3, 969(2015).

[15] G Roelkens, D van Thourhout, R Baets et al. Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit. Opt Express, 14, 8154(2006).

[16] T Tatsumi, K Tanabe, K Watanabe et al. 1.3 μm InAs/GaAs quantum dot lasers on Si substrates by low-resistivity, Au-free metal-mediated wafer bonding. J Appl Phys, 112, 033107(2012).

[17] T Hong, G Z Ran, T Chen et al. A selective-area metal bonding InGaAsP–Si laser. IEEE Photonics Technol Lett, 22, 1141(2010).

[18] D Liang, J E Bowers. Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate. J Vac Sci Technol B, 26, 1560(2008).

[19] J Zhang, G Muliuk, J Juvert et al. III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photonics, 4, 110803(2019).

[20] C O de Beeck, B Haq, L Elsinger et al. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica, 7, 386(2020).

[21] H Park, A Fang, S Kodama et al. Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. Opt Express, 13, 9460(2005).

[22] G Kurczveil, P Pintus, M J R Heck et al. Characterization of insertion loss and back reflection in passive hybrid silicon tapers. IEEE Photonics J, 5, 6600410(2013).

[23] M A Meitl, Z T Zhu, V Kumar et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater, 5, 33(2006).

[24] X X Wang, P O Weigel, J Zhao et al. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate. APL Photonics, 4, 096101(2019).

[25] Y Tang, J D Peters, J E Bowers. Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission. Opt Express, 20, 11529(2012).

[26] E Menard, K J Lee, D Y Khang et al. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl Phys Lett, 84, 5398(2004).

[27] R Safian, M Teng, L M Zhuang et al. Foundry-compatible thin film lithium niobate modulator with RF electrodes buried inside the silicon oxide layer of the SOI wafer. Opt Express, 28, 25843(2020).

[28] M Ayata, Y Fedoryshyn, W Heni et al. High-speed plasmonic modulator in a single metal layer. Science, 358, 630(2017).

[29] M Thomaschewski, V A Zenin, C Wolff et al. Plasmonic monolithic lithium niobate directional coupler switches. Nat Commun, 11, 1(2020).

Swapnajit Chakravarty, Min Teng, Reza Safian, Leimeng Zhuang. Hybrid material integration in silicon photonic integrated circuits[J]. Journal of Semiconductors, 2021, 42(4): 041303
Download Citation