• Photonics Research
  • Vol. 6, Issue 5, B1 (2018)
Andres D. Neira, Gregory A. Wurtz*, and Anatoly V. Zayats
Author Affiliations
  • Department of Physics, King’s College London, Strand, London WC2R 2LS, UK
  • show less
    DOI: 10.1364/PRJ.6.0000B1 Cite this Article Set citation alerts
    Andres D. Neira, Gregory A. Wurtz, Anatoly V. Zayats. All-optical switching in silicon photonic waveguides with an epsilon-near-zero resonant cavity [Invited][J]. Photonics Research, 2018, 6(5): B1 Copy Citation Text show less
    References

    [1] D. A. B. Miller. Device requirements for optical interconnects to silicon chips. Proc. IEEE, 97, 1166-1185(2009).

    [2] A. V. Krasavin, A. V. Zayats. Active nanophotonic circuitry based on dielectric-loaded plasmonic waveguides. Adv. Opt. Mater., 3, 1662-1690(2015).

    [3] C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Photonics, 3, 216-219(2009).

    [4] M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, A. Scherer. Terahertz all-optical modulation in a silicon-polymer hybrid system. Nat. Mater., 5, 703-709(2006).

    [5] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [6] C. P. T. McPolin, J.-S. Bouillard, S. Vilain, A. V. Krasavin, W. Dickson, D. O’Connor, G. A. Wurtz, J. Justice, B. Corbett, A. V. Zayats. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform. Nat. Commun., 7, 12409(2016).

    [7] Q. Xu, B. Schmidt, S. Pradhan, M. Lipson. Micrometre-scale silicon electro-optic modulator. Nature, 435, 325-327(2005).

    [8] H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, R. T. Chen. Recent advances in silicon-based passive and active optical interconnects. Opt. Express, 23, 2487-2511(2015).

    [9] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, V. M. Stojanović. Single-chip microprocessor that communicates directly using light. Nature, 528, 534-538(2015).

    [10] A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, M. Hochberg. Progress in silicon platforms for integrated optics. Nanophotonics, 3, 205-214(2014).

    [11] K. Liu, C. R. Ye, S. Khan, V. J. Sorger. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photon. Rev., 9, 172-194(2015).

    [12] V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, A. Boltasseva. Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials. Opt. Express, 21, 27326-27337(2013).

    [13] S. G. Carter, V. Birkedal, C. S. Wang, L. A. Coldren, A. V. Maslov, D. S. Citrin, M. S. Sherwin. Quantum coherence in an optical modulator. Science, 310, 651-653(2005).

    [14] M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, Y. S. Kivshar. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett., 15, 6985-6990(2015).

    [15] S. Kodama, T. Yoshimatsu, H. Ito. 500  Gbit/s optical gate monolithically integrating photodiode and electroabsorption modulator. Electron. Lett., 40, 555-556(2004).

    [16] L. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Cordova-Castro, N. Olivier, G. A. Wurtz, A. V. Zayats. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat. Photonics, 11, 628-633(2017).

    [17] M. Kauranen, A. V. Zayats. Nonlinear plasmonics. Nat. Photonics, 6, 737-748(2012).

    [18] J. Y. Bigot, J. Y. Merle, O. Cregut, A. Daunois. Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses. Phys. Rev. Lett., 75, 4702-4705(1995).

    [19] A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, N. I. Zheludev. Carbon nanotubes in a photonic metamaterial. Phys. Rev. Lett., 104, 153902(2010).

    [20] M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, N. I. Zheludev. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater., 23, 5540-5544(2011).

    [21] A. V. Krasavin, A. V. Zayats. Benchmarking system-level performance of passive and active plasmonic components: integrated circuits approach. Proc. IEEE, 104, 2338-2348(2016).

    [22] C. McPolin, N. Olivier, J.-S. Bouillard, D. O’Connor, A. V. Krasavin, W. Dickson, G. A. Wurtz, A. V. Zayats. Universal switching of plasmonic signals using optical resonator modes. Light Sci. Appl., 6, e16237(2017).

    [23] A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar. Hyperbolic metamaterials. Nat. Photonics, 7, 948-957(2013).

    [24] G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, A. V. Zayats. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotechnol., 6, 107-111(2011).

    [25] S. Peruch, A. Neira, G. A. Wurtz, B. Wells, V. A. Podolskiy, A. V. Zayats. Geometry defines ultrafast hot carrier dynamics and Kerr nonlinearity in plasmonic metamaterial waveguides and cavities. Adv. Opt. Mater., 5, 1700299(2017).

    [26] A. D. Neira, G. A. Wurtz, P. Ginzburg, A. V. Zayats. Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry. Opt. Express, 22, 10987-10994(2014).

    [27] A. Neira, N. Olivier, M. Nasir, W. Dickson, G. A. Wurtz, A. V. Zayats. Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nat. Commun., 6, 7757(2015).

    [28] C. L. Cortes, Z. Jacob. Photonic analog of a van Hove singularity in metamaterials. Phys. Rev. B, 88, 045407(2013).

    [29] N. Vasilantonakis, M. E. Nasir, W. Dickson, G. A. Wurtz, A. V. Zayats. Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides. Laser Photon. Rev., 9, 345-353(2015).

    [30] W. Dickson, S. Beckett, C. McClatchey, A. Murphy, D. O’Connor, G. A. Wurtz, R. Pollard, A. V. Zayats. Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials. Adv. Mater., 27, 5974-5980(2015).

    [31] A. D. Neira, G. A. Wurtz, A. V. Zayats. Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides. Sci. Rep., 5, 17678(2015).

    [32] M. E. Nasir, S. Peruch, N. Vasilantonakis, W. P. Wardley, W. Dickson, G. A. Wurtz, A. V. Zayats. Tuning the effective plasma frequency of nanorod metamaterials from visible to telecom wavelengths. Appl. Phys. Lett., 107, 121110(2015).

    [33] K. V. Sreekanth, A. De Luca, G. Strangi. Experimental demonstration of surface and bulk plasmon polaritons in hypergratings. Sci. Rep., 3, 3291(2013).

    [34] J. Elser, R. Wangberg, V. A. Podolskiy, E. E. Narimanov. Nanowire metamaterials with extreme optical anisotropy. Appl. Phys. Lett., 89, 261102(2006).

    [35] . Comsol Multiphysics 4.3a(2014).

    [36] L. Jiang, H.-L. Tsai. Improved two-temperature model and its application in ultrashort laser heating of metal films. J. Heat Transfer, 127, 1167-1173(2005).

    [37] S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, N. Pleros. Active plasmonics in WDM traffic switching applications. Sci. Rep., 2, 652(2012).

    CLP Journals

    [1] Jiaye Wu, Ze Tao Xie, Yanhua Sha, H. Y. Fu, Qian Li. Epsilon-near-zero photonics: infinite potentials[J]. Photonics Research, 2021, 9(8): 1616

    Andres D. Neira, Gregory A. Wurtz, Anatoly V. Zayats. All-optical switching in silicon photonic waveguides with an epsilon-near-zero resonant cavity [Invited][J]. Photonics Research, 2018, 6(5): B1
    Download Citation