• Photonics Research
  • Vol. 7, Issue 2, 121 (2019)
Anjin Liu1、2、3、*, Philip Wolf4, James A. Lott4, and Dieter Bimberg4、5
Author Affiliations
  • 1Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Institute of Solid State Physics and Center of Nanophotonics, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
  • 5Bimberg Chinese-German Center for Green Photonics of the Chinese Academy of Sciences at CIOMP, Changchun 130033, China
  • show less
    DOI: 10.1364/PRJ.7.000121 Cite this Article Set citation alerts
    Anjin Liu, Philip Wolf, James A. Lott, Dieter Bimberg. Vertical-cavity surface-emitting lasers for data communication and sensing[J]. Photonics Research, 2019, 7(2): 121 Copy Citation Text show less
    References

    [1] I. Melngailis. Longitudinal injection plasma laser of InSb. Appl. Phys. Lett., 6, 59-60(1965).

    [2] H. Soda, K. Iga, C. Kitahara, Y. Suematsu. GaInAsP/InP surface emitting injection lasers. Jpn. J. Appl. Phys., 18, 2329-2330(1979).

    [3] J. P. van der Ziel, M. Ilegems. Multilayer GaAs-A10.3Ga0.7As dielectric quarter wave stacks grown by molecular beam epitaxy. Appl. Opt., 14, 2627-2630(1975).

    [4] M. Ogura, T. Hata, N. J. Kawai, T. Yao. GaAs/AlxGa1-xAs multilayer reflector for surface emitting laser diode. Jpn. J. Appl. Phys., 22, L112-L114(1983).

    [5] M. Ogura, T. Hata, T. Yao. Distributed feedback surface emitting laser diode with multilayered heterostructure. Jpn. J. Appl. Phys., 23, L512-L514(1984).

    [6] M. Ogura, T. Yao. Surface emitting laser diode with AlxGa1-xAs/GaAs multilayered heterostructure. J. Vac. Sci. Technol. B, 3, 784-787(1985).

    [7] K. Iga, S. Kinoshita, F. Koyama. Microcavity GaAlAs/GaAs surface-emitting laser with lth = 6  mA. Electron. Lett., 23, 134-136(1987).

    [8] T. Sakaguchi, F. Koyama, K. Iga. Vertical cavity surface-emitting laser with an AlGaAs/AlAs Bragg reflector. Electron. Lett., 24, 928-929(1988).

    [9] P. L. Gourley, T. J. Drummond. Visible, room temperature, surface emitting laser using an epitaxial Fabry–Perot resonator with AlGaAs/AlAs quarter-wave high reflectors and AlGaAs/GaAs multiple quantum wells. Appl. Phys. Lett., 50, 1225-1227(1987).

    [10] J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, L. T. Florez. Low-threshold electrically pumped vertical-cavity surface-emitting microlasers. Electron. Lett., 25, 1123-1134(1989).

    [11] Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez. Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes. Electron. Lett., 25, 1377-1378(1989).

    [12] Y. H. Lee, B. Tell, K. Brown-Goebeler, J. L. Jewell, J. V. Hove. Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85  μm. Electron. Lett., 26, 710-711(1990).

    [13] R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, L. A. Coldren. Low threshold planarized vertical-cavity surface-emitting lasers. IEEE Photon. Technol. Lett., 2, 234-236(1990).

    [14] J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, N. El-Zein. Hydrolyzation oxidation of AlxGa1-xAs-AlAs-GaAs quantum well heterostructures and superlattices. Appl. Phys. Lett., 57, 2844-2846(1990).

    [15] D. L. Huffaker, D. G. Deppe, K. Kumar, T. J. Rogers. Native-oxide defined ring contact for low threshold vertical-cavity lasers. Appl. Phys. Lett., 65, 97-99(1994).

    [16] K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull. Advances in selective wet oxidation of AlGaAs alloys. IEEE J. Sel. Top. Quantum Electron., 3, 916-926(1997).

    [17] M. Dallesasse, N. Holonyak. Oxidation of Al-bearing III-V materials: a review of key progress. J. Appl. Phys., 113, 051101(2013).

    [18] F. Koyama. Recent advances of VCSEL photonics. J. Lightwave Technol., 24, 4502-4513(2006).

    [19] H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, D. Bimberg. Vertical-cavity surface-emitting lasers for optical interconnects. SPIE Newsroom(2014).

    [20] A. Larsson. Advances in VCSELs for communication and sensing. IEEE J. Sel. Top. Quantum Electron., 17, 1552-1567(2011).

    [21] R. Michalzik. VCSELs - Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, 166(2013).

    [22] J. A. Tatum. VCSEL proliferation. Proc. SPIE, 6484, 648403(2014).

    [23] M. Grabherr. New applications boost VCSEL quantities: recent developments at Philips. Proc. SPIE, 9381, 938102(2015).

    [24] C. Wilmsen, H. Temkin, L. A. Coldren. Vertical Cavity Surface Emitting Lasers: Design, Fabrication, Characterization and Applications(1999).

    [25] H. E. Li, K. Iga. Vertical-Cavity Surface-Emitting Laser Devices, 6(2003).

    [26] J.-F. Seurin, D. Zhou, G. Xu, A. Miglo, D. Li, T. Chen, B. Guo, C. Ghosh. High-efficiency VCSEL arrays for illumination and sensing in consumer applications. Proc. SPIE, 9766, 97660D(2016).

    [27] N. Mukoyama, H. Otoma, J. Sakurai, N. Ueki, H. Nakayama. VCSEL array-based light exposure system for laser printing. Proc. SPIE, 6908, 69080H(2008).

    [28] D. Zhou, J.-F. Seurin, G. Xu, R. V. Leeuwen, A. Miglo, Q. Wang, A. Kovsh, C. Ghosh. Progress on high-power 808  nm VCSELs and applications. Proc. SPIE, 10122, 1012206(2007).

    [29] H. Moench, R. Conrads, S. Gronenborn, X. Gu, M. Miller, P. Pekarski, J. Pollman-Retsch, A. Pruijmboom, U. Weichmann. Integrated high power VCSEL systems. Proc. SPIE, 9733, 97330V(2016).

    [30] M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, M.-C. Amann. 1550-nm high-speed short-cavity VCSELs. IEEE J. Sel. Top. Quantum Electron., 17, 1158-1166(2011).

    [31] S. Spiga, W. Soenen, A. Andrejew, D. M. Schoke, X. Yin, J. Bauwelinck, G. Boehm, M.-C. Amann. Single-mode high-speed 1.5-μm VCSELs. J. Lightwave Technol., 35, 727-733(2017).

    [32] A. Caliman, A. Mereuta, P. Wolf, A. Sirbu, V. Iakovlev, D. Bimberg, E. Kapon. 25  Gbps direct modulation and 10  km data transmission with 1310  nm waveband wafer fused VCSELs. Opt. Express, 24, 16329-16335(2016).

    [33] T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, S.-C. Wang. CW lasing of current injection blue GaN-based vertical cavity surface emitting laser. Appl. Phys. Lett., 92, 141102(2008).

    [34] L. A. Coldren, S. W. Corzine, M. L. Mašanović. Diode Lasers and Photonic Integrated Circuits(2012).

    [35] I. Suemune. Theoretical study of differential gain in strained quantum well structures. IEEE J. Quantum Electron., 27, 1149-1159(1991).

    [36] P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Sköld, A. Joel, A. Larsson. High-speed, low-current-density 850  nm VCSELs. IEEE J. Sel. Top. Quantum Electron., 15, 694-703(2009).

    [37] S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, A. Joel. Active region design for high-speed 850-nm VCSELs. IEEE J. Quantum Electron., 46, 506-512(2010).

    [38] P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson. Impact of photon lifetime on high-speed VCSEL performance. IEEE J. Sel. Top. Quantum Electron., 17, 1603-1613(2011).

    [39] G. Larisch, P. Moser, J. A. Lott, D. Bimberg. Impact of photon lifetime on the temperature stability of 50  Gb/s 980  nm VCSELs. IEEE Photon. Technol. Lett., 28, 2327-2330(2016).

    [40] W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, D. Bimberg. 44  Gb/s VCSEL for optical interconnects. Optical Fiber Communication Conference, PDPC5(2011).

    [41] P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, D. Bimberg. 85°C error-free operation at 38  Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers. Appl. Phys. Lett., 100, 081103(2012).

    [42] H. W. Then, C. H. Wu, M. Feng, N. Holonyak. Microwave characterization of Purcell enhancement in a microcavity laser. Appl. Phys. Lett., 96, 131107(2010).

    [43] P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, G. A. Vawter. Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD. IEEE Photon. Technol. Lett., 3, 591-593(1991).

    [44] M. A. Afromowitz. Thermal conductivity of Ga1-xAlxAs alloys. J. Appl. Phys., 44, 1292-1294(1973).

    [45] K. Lascola, W. Yuen, C. Chang-Hasnain. Structural dependence of the thermal resistance of vertical cavity surface emitting lasers. IEEE/LEOS Summer Topical Meeting, 79-80(1997).

    [46] A. N. AL-Omari, M. S. Alias, A. Ababneh, K. L. Lear. Improved performance of top-emitting oxide-confined polyimide-planarized 980  nm VCSELs with copper-plated heat sinks. J. Phys. D, 45, 505101(2012).

    [47] R. Pu, C. W. Wilmsen, K. M. Geib, K. D. Choquette. Thermal resistance of VCSEL’s bonded to integrated circuits. IEEE Photon. Technol. Lett., 11, 1554-1556(1999).

    [48] E. F. Schubert, L. W. Tu, G. J. Zydzik, R. F. Kopf, A. Benvenuti, M. R. Pinto. Elimination of heterojunction band discontinuities by modulation doping. Appl. Phys. Lett., 60, 466-468(1992).

    [49] A. N. AL-Omari, K. L. Lear. Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth. IEEE Photon. Technol. Lett., 16, 969-971(2004).

    [50] Y.-C. Chang, C. S. Wang, L. A. Coldren. High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation. Electron. Lett., 43, 1022-1023(2007).

    [51] M. Azuchi, N. Jikutani, M. Ami, T. Kondo, F. Koyama. Multioxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth. 5th Pacific Rim Conference on Lasers and Electro-Optics, 1, 163(2003).

    [52] Y.-C. Chang, C. S. Wang, L. A. Johansson, L. A. Coldren. High-efficiency, high-speed VCSELs with deep oxidation layers. Electron. Lett., 42, 1281-1282(2006).

    [53] N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, M. Tsuji. 25  Gbit/s operation of InGaAs-based VCSELs. Electron. Lett., 42, 975-976(2006).

    [54] D. M. Kuchta, P. Pepeljugoski, Y. Kwark. VCSEL modulation at 20  Gb/s over 200  m of multimode fiber using a 3.3  V SiGe laser driver IC. Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo, 49-50(2001).

    [55] R. H. Johnson, D. M. Kuchta. 30  Gb/s directly modulated 850  nm datacom VCSELs. Conference on Lasers and Electro-Optics, CPDB2(2008).

    [56] P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, A. Joel. 32  Gbit/s multimode fibre transmission using high-speed, low current density 850  nm VCSEL. Electron. Lett., 45, 366-368(2009).

    [57] P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, A. Joel. 40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL. Electron. Lett., 46, 1014-1016(2010).

    [58] P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, A. Joel. High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s. Electron. Lett., 48, 1145-1147(2012).

    [59] P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, A. Larsson. High-speed 850  nm VCSELs operating error free up to 57  Gbit/s. Electron. Lett., 49, 1021-1023(2013).

    [60] E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, A. Joel. 30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s. Electron. Lett., 51, 1096-1098(2015).

    [61] A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, D. Bimberg. Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers. Appl. Phys. Lett., 95, 131101(2009).

    [62] S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, D. Bimberg. Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s. Electron. Lett., 45, 501-502(2009).

    [63] F. Tan, M.-K. Wu, M. Liu, M. Feng, N. Holonyak. 850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission. IEEE Photon. Technol. Lett., 26, 289-292(2014).

    [64] M. Liu, C. Y. Wang, M. Feng, N. Holonyak. 850  nm oxide-confined VCSELs with 50  Gb/s error-free transmission operating up to 85°C. Conference on Lasers and Electro-Optics, SF1L.6(2016).

    [65] J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, Y.-J. Yang. Oxide-relief and Zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/s operations. IEEE J. Sel. Top. Quantum Electron., 19, 7900208(2013).

    [66] K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, J.-W. Shi. Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/s) and low-energy consumption operation. IEEE J. Sel. Top. Quantum Electron., 21, 1701510(2015).

    [67] Y.-C. Chang, L. A. Coldren. Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron., 15, 704-715(2009).

    [68] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, D. Bimberg. Error-free 46  Gbit/s operation of oxide-confined 980  nm VCSELs at 85°C. Electron. Lett., 50, 1369-1371(2014).

    [69] N. Haghighi, G. Larisch, R. Rosales, M. Zorn, J. A. Lott. 35  GHz bandwidth with directly current modulated 980  nm oxide aperture single cavity VCSELs. IEEE International Semiconductor Laser Conference (ISLC), WD4(2018).

    [70] E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, M. R. Tan. 1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate. Electron. Lett., 53, 869-871(2017).

    [71] K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, M. Tsuji. 1.1-μm-range high-speed tunnel junction vertical-cavity surface-emitting lasers. IEEE Photon. Technol. Lett., 19, 1883-1885(2007).

    [72] T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, M. Tsuji. High-speed 1.1-μm-range InGaAs VCSELs. Optical Fiber Communication Conference, OthS5(2008).

    [73] D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, A. Larsson. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link. IEEE Photon. Technol. Lett., 27, 577-580(2015).

    [74] E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson. High-speed VCSELs with strong confinement of optical fields and carriers. J. Lightwave Technol., 34, 269-277(2015).

    [75] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, J. Tatum. A 55  Gb/s directly modulated 850  nm VCSEL-based optical link. IEEE Photonics Conference, PD1.5(2012).

    [76] D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, J. Tatum. A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link. Optical Fiber Communication Conference, OW1B.5(2013).

    [77] M. Liu, C. Y. Wang, M. Feng, N. Holonyak. 50  Gb/s error-free data transmission of 850  nm oxide-confined VCSELs. Optical Fiber Communication Conference, Tu3D.2(2016).

    [78] H. Nasu. Short-reach optical interconnects employing high-density parallel-optical modules. IEEE J. Sel. Top. Quantum Electron., 16, 1337-1346(2010).

    [79] P. Wolf, P. Moser, G. Larisch, W. Hofmann, D. Bimberg. High-speed and temperature-stable, oxide-confined 980-nm VCSELs for optical interconnects. IEEE J. Sel. Top. Quantum Electron., 19, 1701207(2013).

    [80] P. Moser, J. A. Lott, G. Larisch, D. Bimberg. Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs. J. Lightwave Technol., 33, 825-831(2015).

    [81] R. Rosales, M. Zorn, J. A. Lott. 30-GHz bandwidth with directly current-modulated 980-nm oxide-aperture VCSELs. IEEE Photon. Technol. Lett., 29, 2107-2110(2017).

    [82] N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, J. A. Lott. Simplicity VCSELs. Proc. SPIE, 10552, 105520N(2018).

    [83] N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, M. Tsuji. 25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections. Optical Fiber Communication Conference, OFA4(2006).

    [84] D. Mahgerefteh, C. Thompson, C. Cole, G. Denoyer, T. Nguyen, I. Lyubomirsky, C. Kocot, J. Tatum. Techno-economic comparison of silicon photonics and multimode VCSELs. J. Lightwave Technol., 34, 233-242(2016).

    [85] H. Liu, C. F. Lam, C. Johnson. Scaling optical interconnects in datacenter networks opportunities and challenges for WDM. IEEE Symposium on High Performance Interconnects, 113-116(2010).

    [86] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, D. Bimberg. 85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs. IEEE Photon. Technol. Lett., 25, 1638-1641(2013).

    [87] R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, A. Larsson. 20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL. Electron. Lett., 50, 40-42(2014).

    [88] H. Dalir, F. Koyama. 29  GHz directly modulated 980  nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity. Appl. Phys. Lett., 103, 091109(2013).

    [89] S. T. M. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, K. D. Choquette. 37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays. IEEE Photon. Technol. Lett., 27, 415-418(2015).

    [90] B. Tell, K. F. Brown-Goebeler, R. E. Leibenguth, F. M. Baez, Y. H. Lee. Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers. Appl. Phys. Lett., 60, 683-685(1992).

    [91] L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, J. A. Tatum. The next generation of high speed VCSELs at Finisar. Proc. SPIE, 8276, 827602(2012).

    [92] C. Xie, N. Li, S. Huang, C. Liu, L. Wang, K. P. Jackson. The next generation high data rate VCSEL development at SEDU. Proc. SPIE, 8639, 863903(2013).

    [93] P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, A. Joel. High-speed oxide confined 850-nm VCSELs operating error-free at 40  Gb/s up to 85°C. IEEE Photon. Technol. Lett., 25, 768-771(2013).

    [94] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, A. Larsson. A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C. J. Lightwave Technol., 33, 802-810(2015).

    [95] N. Ledentsov, M. Agustin, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha, K. L. Chi, Z. Khan, J. W. Shi, N. N. Ledentsov. Temperature stable oxide-confined 850  nm VCSELs operating at bit rates up to 25  Gbit/s at 150°C. Proc. SPIE, 10552, 105520P(2018).

    [96] P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, D. Bimberg. 81  fJ/bit energy-to-data ratio of 850  nm vertical-cavity surface-emitting lasers for optical interconnects. Appl. Phys. Lett., 98, 231106(2011).

    [97] A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, D. Bimberg. 120°C 20  Gbit/s operation of 980  nm VCSEL. Electron. Lett., 44, 1305-1306(2008).

    [98] H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, D. Bimberg. Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85°C. Electron. Lett., 50, 103-105(2014).

    [99] H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, D. Bimberg. Temperature-stable 980-nm VCSELs for 35-Gb/s operation at 85°C with 139-fJ/bit dissipated heat. IEEE Photon. Technol. Lett., 26, 2349-2352(2014).

    [100] D. A. B. Miller. Device requirements for optical interconnects to silicon chips. Proc. IEEE, 97, 1166-1185(2009).

    [101] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, D. Bimberg. 56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s. Electron. Lett., 48, 1292-1294(2012).

    [102] F. Tan, C. H. Wu, M. Feng, N. Holonyak. Energy efficient microcavity lasers with 20 and 40  Gb/s data transmission. Appl. Phys. Lett., 98, 191107(2011).

    [103] C. H. Wu, F. Tan, M. Feng, N. Holonyak. The effect of mode spacing on the speed of quantum-well microcavity lasers. Appl. Phys. Lett., 97, 091103(2010).

    [104] P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, D. Bimberg. Energy efficient 40  Gbit/s transmission with 850  nm VCSELs at 108  fJ/bit dissipated heat. Electron. Lett., 49, 666-667(2013).

    [105] J.-W. Shi, W.-C. Weng, F.-M. Kuo, J.-I. Chyi, S. Pinches, M. Geen, A. Joel. Oxide-relief vertical-cavity surface-emitting lasers with extremely high data-rate/power-dissipation ratios. Optical Fiber Communication Conference, OthG2(2011).

    [106] H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, D. Bimberg. Temperature-stable, energy-efficient, and high-bit rate oxide-confined 980-nm VCSELs for optical interconnects. IEEE J. Sel. Top. Quantum Electron., 21, 1700409(2015).

    [107] S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa. Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection. IEEE J. Sel. Top. Quantum Electron., 17, 1614-1620(2011).

    [108] T. Suzuki, M. Funabashi, H. Shimizu, K. Nagashima, S. Kamiya, A. Kasukawa. 1060  nm 28-Gbps VCSEL developed at Furukawa. Proc. SPIE, 9001, 900104(2014).

    [109] J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, S. E. Ralph. 100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs. European Conference and Exhibition on Optical Communication (ECOC), Th.1.C5(2016).

    [110] J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, S. E. Ralph. 4λ × 100 Gbps VCSEL PAM-4 transmission over 105  m of wide band multimode fiber. Optical Fiber Communication Conference, Tu2B.6(2017).

    [111] P. Wolf, H. Li, A. Caliman, A. Mereuta, V. Iakovlev, A. Sirbu, E. Kapon, D. Bimberg. Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3  μm wafer-fusion VCSELs for optical interconnects. ACS Photon., 4, 2018-2024(2017).

    [112] K. Szczerba, T. Lengyel, M. Karlsson, P. A. Andrekson, A. Larsson. 94-Gb/s 4-PAM using an 850-nm VCSEL, pre-emphasis, and receiver equalization. IEEE Photon. Technol. Lett., 28, 2519-2521(2016).

    [113] S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard. 180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre. Optical Fiber Communication Conference, Th3G.2(2016).

    [114] P. Kolesar. Wideband MMF standardization and S-WDM technology(2016).

    [115] T. Aalto, M. Harjanne, M. Karppinen, M. Cherchi, A. Sitomaniemi, J. Ollila, A. Malacarne, C. Neumeyr. Optical interconnects based on VCSELs and low-loss silicon photonics. Proc. SPIE, 10538, 1053816(2018).

    [116] P.-K. Shen, C.-T. Chen, C.-H. Chang, C.-Y. Chiu, C.-C. Chang, H.-C. Lan, Y.-C. Lee, M.-L. Wu. On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides. Optical Fiber Communication Conference, M2K.6(2014).

    [117] Y. W. Xu, A. Michael, C. Y. Kwok. Fabrication of smooth 45° micromirror using TMAH low concentration solution with NCW-601A surfactant on <100> silicon. Proc. SPIE, 6800, 68001W(2008).

    [118] R. Santos, D. D’Agostino, F. M. Soares, H. Rabbani Haghighi, M. K. Smit, X. J. M. Leijtens. Fabrication and characterization of a wet-etched InP-based vertical coupling mirror. 18th Annual Symposium of the IEEE Photonics Benelux, 179-182(2013).

    [119] Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, N. Keil. Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control. IET Optoelectron., 5, 226-232(2011).

    [120] D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, P. S. Guilfoyle. VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings. Electron. Lett., 40, 1064-1065(2004).

    [121] J. Witzens, A. Scherer, G. Pickrell, D. Louderback, P. Guilfoyle. Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides. Appl. Phys. Lett., 86, 101105(2005).

    [122] K. S. Kaur, A. Z. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, G. Van Steenberge. Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms. Opt. Express, 23, 28264-28270(2015).

    [123] H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, P. O’Brien. Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit. Opt. Express, 24, 16258-16266(2016).

    [124] H. Li, X. Ma, D. Yuan, Z. Zhang, E. Li, C. Tang. Heterogeneous integration of a III-V VCSEL light source for optical fiber sensing. Opt. Lett., 41, 4158-4161(2016).

    [125] Y. Yang, G. Djogo, M. Haque, P. R. Herman, J. K. S. Poon. Integration of an O-band VCSEL on silicon photonics with polarization maintenance and waveguide coupling. Opt. Express, 25, 5758-5771(2017).

    [126] N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, C. Koos. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express, 20, 17667-17677(2012).

    [127] M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, C. Koos. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica, 5, 876-883(2018).

    [128] G. Giuliani, M. Norgia, S. Donati, T. Bosch. Laser diode self-mixing technique for sensing applications. J. Opt. A, 4, S283-S294(2002).

    [129] M. Liess, G. Weijers, C. Heinks, A. van der Horst, A. Rommers, R. Duijve, G. Mimnagh. A miniaturized multidirectional optical motion sensor and input device based on laser self-mixing. Meas. Sci. Technol., 13, 2001-2006(2002).

    [130] A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench, J. Pankert. VCSEL-based miniature laser-Doppler interferometer. Proc. SPIE, 6908, 69080I(2008).

    [131] D. Wiedenmann, M. Grabherr, R. Jäger, R. King. High volume production of single-mode VCSELs. Proc. SPIE, 6132, 613202(2006).

    [132] M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach, D. Duckeck, C. Wimmer. Volume production of polarization controlled single-mode VCSELs. Proc. SPIE, 6908, 690803(2008).

    [133] M. Ortsiefer, M. Görblich, Y. Xu, E. Rönneberg, J. Rosskopf, R. Shau, M.-C. Amann. Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating. IEEE Photon. Technol. Lett., 22, 15-17(2010).

    [134] P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, R. Michalzik. Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study. IEEE J. Sel. Top. Quantum Electron., 11, 107-116(2005).

    [135] D.-S. Song, Y.-J. Lee, H.-W. Choi, Y.-H. Lee. Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers. Appl. Phys. Lett., 82, 3182-3184(2003).

    [136] K.-H. Lee, J.-H. Baek, I.-K. Hwang, Y.-H. Lee, G.-H. Lee, J.-H. Ser, H.-D. Kim, H.-E. Shin. Square-lattice photonic-crystal vertical-cavity surface-emitting lasers. Opt. Express, 12, 4136-4143(2004).

    [137] P. Debernardi, H. J. Unold, J. Maehnss, R. Michalzik, G. P. Bava, K. J. Ebeling. Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory. IEEE J. Sel. Top. Quantum Electron., 9, 1394-1404(2003).

    [138] T. Ohtoshi, T. Kuroda, A. Niwa, S. Tsuji. Dependence of optical gain in crystal orientation in surface-emitting lasers with strained quantum wells. Appl. Phys. Lett., 65, 1886-1887(1994).

    [139] K. Tateno, Y. Ohiso, C. Amano, A. Wakatsuki, T. Kurokawa. Growth of vertical-cavity surface-emitting laser structures on GaAs (311)B substrates by metalorganic chemical vapor deposition. Appl. Phys. Lett., 70, 3395-3397(1997).

    [140] O. Tadanaga, K. Tateno, H. Uenohara, T. Kagawa, C. Amano. An 850-nm InAlGaAs strained quantum-well vertical-cavity surface-emitting laser grown on GaAs (311)B substrate with high-polarization stability. IEEE Photon. Technol. Lett., 12, 942-944(2000).

    [141] K. D. Choquette, R. E. Leibenguth. Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries. IEEE Photon. Technol. Lett., 6, 40-42(1994).

    [142] B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, K. J. Ebeling. High-performance oxide-confined GaAs VCSEL’s. IEEE J. Sel. Top. Quantum Electron., 3, 409-415(1997).

    [143] P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, M. R. T. Tan. Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers. Electron. Lett., 33, 1315-1317(1997).

    [144] H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, A. van der Lee. VCSEL based sensors for distance and velocity. Proc. SPIE, 9766, 97660A(2016).

    [145] L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, J. A. Tatum. High power VCSEL arrays for consumer electronics. Proc. SPIE, 9381, 93810A(2015).

    [146]

    [147] G. Berkovic, E. Shafir. Optical methods for distance and displacement measurements. Adv. Opt. Photon., 4, 441-471(2012).

    [148] M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, M. Rioux. Laser ranging: a critical review of usual techniques for distance measurement. Opt. Eng., 40, 10-19(2001).

    [149] H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, A. Weigl. VCSELs in short-pulse operation for time-of-flight applications. Proc. SPIE, 10552, 105520G(2018).

    [150]

    [151] R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, G.-J. Ulbrich. Imaging distance measurements using TOF lidar. J. Opt., 29, 188-193(1998).

    [152] M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, R. F. Carson. Low-divergence high-power VCSEL arrays for lidar application. Proc. SPIE, 10552, 105520E(2018).

    [153] J. Geng. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photon., 3, 128-160(2011).

    [154] P. Qiao, W. Yang, C. J. Chang-Hasnain. Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals. Adv. Opt. Photon., 10, 180-245(2018).

    [155] W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, S. Fan. Progress in 2D photonic crystal Fano resonance photonics. Prog. Quantum Electron., 38, 1-74(2014).

    [156] C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, Y. Suzuki. Broad-band mirror (1.12–1.62  μm) using a subwavelength grating. IEEE Photon. Technol. Lett., 16, 1676-1678(2004).

    [157] S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, M. Strassner. Highly selective and compact tunable MOEMS photonic crystal Fabry–Perot filter. Opt. Express, 14, 3129-3137(2006).

    [158] R. Magnusson, M. Shokooh-Saremi. Physical basis for wideband resonant reflectors. Opt. Express, 16, 3456-3462(2008).

    [159] V. Karagodsky, F. G. Sedgwick, C. J. Chang-Hasnain. Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express, 18, 16973-16988(2010).

    [160] M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photonics, 1, 119-122(2007).

    [161] S. Boutami, B. Benbakir, J.-L. Leclercq, P. Viktorovitch. Compact and polarization controlled 1.55  μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror. Appl. Phys. Lett., 91, 071105(2007).

    [162] T. Ansbæk, I.-S. Chung, E. S. Semenova, K. Yvind. 1060-nm tunable monolithic high index contrast subwavelength grating VCSEL. IEEE Photon. Technol. Lett., 25, 365-367(2013).

    [163] S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, F. Koyama. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs. Jpn. J. Appl. Phys., 53, 090306(2014).

    [164] M. G. Moharam, T. K. Gaylord. Rigorous coupled-wave analysis of planar grating diffraction. J. Opt. Soc. Am., 71, 811-818(1981).

    [165] M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain. Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers. Appl. Phys. Lett., 92, 171108(2008).

    [166] A. Liu, W. Hofmann, D. Bimberg. Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs. Opt. Express, 22, 11804-11811(2014).

    [167] A. Liu, W. Hofmann, D. Bimberg. Integrated high-contrast-grating optical sensor using guided mode. IEEE J. Quantum Electron., 51, 6600108(2015).

    [168] A. Liu, W. Zheng, D. Bimberg. Unidirectional transmission in finite-size high-contrast gratings. Asia Communications and Photonics Conference, AF2A.52(2016).

    [169] D. Zhao, Z. Ma, W. Zhou. Field penetrations in photonic crystal Fano reflectors. Opt. Express, 18, 14152-14158(2010).

    [170] I.-S. Chung, J. Mørk. Speed enhancement in VCSELs employing grating mirrors. Proc. SPIE, 8633, 863308(2013).

    [171] S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, R. Baets. First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s. IEEE Photon. Technol. Lett., 10, 1205-1207(1998).

    [172] R. Magnusson. Wideband reflectors with zero-contrast gratings. Opt. Lett., 39, 4337-4340(2014).

    [173] J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, H. Jeon. Polarization-dependent GaN surface grating reflector for short wavelength applications. Opt. Express, 17, 22535-22542(2009).

    [174] M. Gębski, M. Dems, A. Szerling, M. Motyka, L. Marona, R. Kruszka, D. Urbańczyk, M. Walczakowski, N. Pałka, A. Wójcik-Jedlińska, Q. J. Wang, D. H. Zhang, M. Bugajski, M. Wasiak, T. Czyszanowski. Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror. Opt. Express, 23, 11674-11686(2015).

    [175] A. Liu, W. Zheng, D. Bimberg. Comparison between high- and zero-contrast gratings as VCSEL mirrors. Opt. Commun., 389, 35-41(2017).

    [176] W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, C. J. Chang-Hasnain. Long-wavelength high-contrast grating vertical-cavity surface-emitting laser. IEEE Photon. J., 2, 415-422(2010).

    [177] K. Li, Y. Rao, C. Chase, W. Yang, C. J. Chang-Hasnain. Monolithic high-contrast metastructure for beam-shaping VCSELs. Optica, 5, 10-13(2018).

    [178] P. Debernardi, R. Orta, T. Gründl, M.-C. Amann. 3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron., 49, 137-145(2013).

    [179] A. Liu, F. Fu, Y. Wang, B. Jiang, W. Zheng. Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure. Opt. Express, 20, 14991-15000(2012).

    [180] M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain. A nanoelectromechanical tunable laser. Nat. Photonics, 2, 180-184(2008).

    [181] Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, C. J. Chang-Hasnain. Long-wavelength VCSEL using high-contrast grating. IEEE J. Sel. Top. Quantum Electron., 19, 1701311(2013).

    [182] V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, C. J. Chang-Hasnain. Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings. Opt. Express, 18, 694-699(2010).

    [183] C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, P. Viktorovitch. III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing. IEEE Photon. Technol. Lett., 25, 1111-1113(2013).

    [184] A. Liu, P. Wolf, J.-H. Schulze, D. Bimberg. Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer. IEEE Photon. J., 8, 2700509(2016).

    [185] A. Liu, W. Zheng, D. Bimberg. VCSEL with finite-size high-contrast metastructure. Proc. SPIE, 10812, 1081202(2018).

    [186] E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, M. Tan. Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings. Opt. Express, 24, 1999-2005(2016).

    [187] L. Ferrier, P. Rojo Romeo, X. Letartre, E. Drouard, P. Viktorovitch. 3D integration of photonic crystal devices: vertical coupling with a silicon waveguide. Opt. Express, 18, 16162-16174(2010).

    [188] J. Ferrara, W. Yang, L. Zhu, P. Qiao, C. J. Chang-Hasnain. Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. Opt. Express, 23, 2512-2523(2015).

    [189] I.-S. Chung, J. Mørk. Silicon-photonics light source realized by III-V/Si-grating-mirror laser. Appl. Phys. Lett., 97, 151113(2010).

    [190] G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, I.-S. Chung. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide. Laser Photon. Rev., 9, L11-L15(2015).

    [191] G. C. Park, W. Xue, M. Piels, D. Zibar, J. Mørk, E. Semenova, I.-S. Chung. Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics. Sci. Rep., 6, 38801(2016).

    [192] S. Kumari, E. P. Haglund, J. S. Gustavsson, A. Larsson, G. Roelkens, R. G. Baets. Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm. Laser Photon. Rev., 12, 1700206(2018).

    [193] M. Gębski, T. Czyszanowski, J. A. Lott. Electrically-injected VCSELs with a composite monolithic high contrast grating and distributed Bragg reflector coupling mirror. IEEE International Semiconductor Laser Conference (ISLC), TuP38(2018).

    [194] N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, J.-W. Shi. Anti-waveguiding vertical-cavity surface-emitting laser at 850  nm: from concept to advances in high-speed data transmission. Opt. Express, 26, 445-453(2018).

    [195] G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, J. P. Turkiewicz. 54  Gbit/s OOK transmission using single-mode VCSEL up to 2.2  km MMF. Electron. Lett., 52, 633-635(2016).

    [196] A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, W. Zheng. Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser. Appl. Phys. Lett., 94, 191105(2009).

    [197] A. J. Liu, W. Chen, H. W. Qu, B. Jiang, W. J. Zhou, M. X. Xing, W. H. Zheng. Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence. Laser Phys. Lett., 7, 213-217(2010).

    [198] A.-J. Liu, W. Chen, W.-J. Zhou, B. Jiang, F. Fu, H.-W. Qu, W.-H. Zheng. Squeeze effect and coherent coupling behaviour in photonic crystal vertical-cavity surface-emitting lasers. J. Phys. D, 44, 115104(2011).

    [199] R. Puerta, M. Agustin, Ł. Chorchos, J. Toński, J. R. Kropp, N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, R. Henker, I. T. Monroy, J. J. V. Olmos, J. P. Turkiewicz. Effective 100  Gb/s IM/DD 850-nm multi- and single-mode VCSEL transmission through OM4 MMF. J. Lightwave Technol., 35, 423-429(2017).

    [200] I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, J. Chen. Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber. IEEE J. Sel. Top. Quantum Electron., 21, 444-452(2015).

    [201] H. Li, D. B. Phillips, X. Wang, Y.-L. D. Ho, L. Chen, X. Zhou, J. Zhu, S. Yu, X. Cai. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica, 2, 547-552(2015).

    [202] S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, J. Moreland. A microfabricated atomic clock. Appl. Phys. Lett., 85, 1460-1462(2004).

    CLP Journals

    [1] Jing Zhang, Chenxi Hao, Wanhua Zheng, Dieter Bimberg, Anjin Liu. Demonstration of electrically injected vertical-cavity surface-emitting lasers with post-supported high-contrast gratings[J]. Photonics Research, 2022, 10(5): 1170

    [2] Lei Han, Yuanbin Gao, Sheng Hang, Chunshuang Chu, Yonghui Zhang, Quan Zheng, Qing Li, Zi-Hui Zhang. Impact of p-AlGaN/GaN hole injection layer on GaN-based vertical cavity surface emitting laser diodes [Invited][J]. Chinese Optics Letters, 2022, 20(3): 031402

    [3] Xiao-Long Wang, Yong-Gang Zou, Zhi-Fang He, Guo-Jun Liu, Xiao-Hui Ma. Polarization control and tuning efficiency of tunable vertical-cavity surface-emitting laser with internal-cavity sub-wavelength grating[J]. Chinese Physics B, 2020, 29(8):

    Anjin Liu, Philip Wolf, James A. Lott, Dieter Bimberg. Vertical-cavity surface-emitting lasers for data communication and sensing[J]. Photonics Research, 2019, 7(2): 121
    Download Citation