• Journal of Semiconductors
  • Vol. 40, Issue 8, 081504 (2019)
Bo Gu1、2
Author Affiliations
  • 1Kavli Institute for Theoretical Sciences, and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
  • 2Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
  • show less
    DOI: 10.1088/1674-4926/40/8/081504 Cite this Article
    Bo Gu. High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems[J]. Journal of Semiconductors, 2019, 40(8): 081504 Copy Citation Text show less
    References

    [1]

    [2]

    [3] D Kenney, C Norman. What don’t we know. Science, 309, 75(2005).

    [4] H Ohno. Making nonmagnetic semiconductors ferromagnetic. Science, 281, 951(1998).

    [5] T Dietl. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 9, 965(2010).

    [6] L Chen, X Yang, F Yang et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 11, 2584(2011).

    [7] J Masek, J Kudrnovsky, F Maca et al. Dilute moment n-type ferromagnetic semiconductor Li(Zn,Mn)As. Phys Rev Lett, 98, 067202(2007).

    [8] Z Deng, C Q Jin, Q Q Liu et al. Li(Zn,Mn)As as a new generation ferromagnet based on a I–II–V semiconductor. Nat Commun, 2, 422(2011).

    [9] Z Deng, K Zhao, B Gu et al. Diluted ferromagnetic semiconductor Li(Zn,Mn)P with decoupled charge and spin doping. Phys Rev B, 88, 081203(2013).

    [10] C Ding, H Man, C Qin et al. (La1–xBax)(Zn1–xMnx)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. Phys Rev B, 88, 041102(2013).

    [11] K Zhao, Z Deng, X C Wang et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the 122 iron-based superconductors. Nat Commun, 4, 1442(2013).

    [12] K Zhao, B J Chen, G Q Zhao et al. Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 59, 2524(2014).

    [13] J K Glasbrenner, I Zutic, I I Mazin. Theory of Mn-doped II–II–V semiconductors. Phys Rev B, 90, 140403(2014).

    [14] H Suzuki, K Zhao, G Shibata et al. Photoemission and X-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba1–xKx(Zn1–yMny)2As2. Phys Rev B, 91, 140401(2015).

    [15] H Suzuki, G Q Zhao, K Zhao et al. Fermi surfaces and p-d hybridization in the diluted magnetic semiconductor Ba1–xKx- (Zn1–yMny)2As2 studied by soft X-ray angle-resolved photoemission spectroscopy. Phys Rev B, 92, 235120(2015).

    [16] S Guo, H Man, C Ding et al. Ba(Zn,Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 99, 155201(2019).

    [17] B Gu, S Maekawa. Diluted magnetic semiconductors with narrow band gaps. Phys Rev B, 94, 155202(2016).

    [18] B Gu, S Maekawa. New p- and n-type ferromagnetic semiconductors: Cr-doped BaZn2As2. AIP Adv, 7, 055805(2017).

    [19] B Gu, N Bulut, S Maekawa. Crystal structure effect on the ferromagnetic correlations in ZnO with magnetic impurities. J Appl Phys, 104, 103906(2008).

    [20] J Ohe, Y Tomoda, N Bulut et al. Combined approach of density functional theory and quantum Monte Carlo method to electron correlation in dilute magnetic semiconductors. J Phys Soc Jpn, 78, 083703(2009).

    [21] B Gu, N T Bulut et al. Possible d0 ferromagnetism in MgO doped with nitrogen. Phys Rev B, 79, 024407(2009).

    [22]

    [23] N Bulut, K Tanikawa, S Takahashi et al. Long-range ferromagnetic correlations between Anderson impurities in a semiconductor host: Quantum Monte Carlo simulations. Phys Rev B, 76, 045220(2007).

    [24] Y Tomoda, N Bulut, S Maekawa. Inter-impurity and impurity-host magnetic correlations in semiconductors with low-density transition-metal impurities. Physica B, 404, 1159(2009).

    [25] B Huang, G Clark, E Navarro-Moratalla et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 546, 270(2017).

    [26] C Gong, L Li, Z Li et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 546, 265(2017).

    [27] M Bonilla, S Kolekar, Y Ma et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 13, 289(2018).

    [28] D J O’Hara, T Zhu, A H Trout et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett, 18, 3125(2018).

    [29] P Hohenberg, W Kohn. Inhomogeneous electron gas. Phys Rev, 136, B864(1964).

    [30] W Kohn, L J Sham. Self-consistent equations including exchange and correlation effects. Phys Rev, 140, A1133(1965).

    [31] J E Hirsch, R M Fye. Monte Carlo method for magnetic impurities in metals. Phys Rev Lett, 56, 2521(1986).

    [32] B Gu, J Y Gan, N Bulut et al. Quantum renormalization of the spin Hall effect. Phys Rev Lett, 105, 086401(2010).

    [33] B Gu, I Sugai, T Ziman et al. Surface-assisted spin Hall effect in Au films with Pt impurities. Phys Rev Lett, 105, 216401(2010).

    [34] Z Xu, B Gu, M Mori et al. Sign change of the spin Hall effect due to electron correlation in nonmagnetic CuIr alloys. Phys Rev Lett, 114, 017202(2015).

    [35] F D M Haldane, P W Anderson. Simple model of multiple charge states of transition-metal impurities in semiconductors. Phys Rev B, 13, 2553(1976).

    [36]

    [37] F Tran, P Blaha. Implementation of screened hybrid functionals based on the Yukawa potential within the LAPW basis set. Phys Rev B, 83, 235118(2011).

    [38] I R Shein, A L Ivanovskii. Elastic, electronic properties and intra-atomic bonding in orthorhombic and tetragonal polymorphs of BaZn2As2 from first-principles calculations. J Alloys Compd, 583, 100(2014).

    [39] X J Dong, J Y You, B Gu et al. Strain-induced room-temperature ferromagnetic semiconductors with large anomalous Hall conductivity in two-dimensional Cr2Ge2Se6. Phys Rev Appl, 12, 014020(2019).

    [40]

    [41] N T Tu, P N Hai, L D Anh et al. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb. Appl Phys Lett, 108, 192401(2016).

    [42]

    [43] A V Kudrin, Y A Danilov, V P Lesnikov et al. High-temperature intrinsic ferromagnetism in the (In,Fe)Sb semiconductor. J Appl Phys, 122, 183901(2017).

    [44] N T Tu, P N Hai, L D Anh et al. Electrical control of ferromagnetism in the n-type ferromagnetic semiconductor (In,Fe)Sb with high Curie temperature. Appl Phys Lett, 112, 122409(2018).

    [45] K S Burch, D Mandrus, J G Park. Magnetism in two-dimensional van der Waals materials. Nature, 563, 47(2018).

    Bo Gu. High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems[J]. Journal of Semiconductors, 2019, 40(8): 081504
    Download Citation