• Photonics Research
  • Vol. 9, Issue 4, 439 (2021)
Xiao-Bo Hu1, Benjamin Perez-Garcia2、5, Valeria Rodríguez-Fajardo3, Raul I. Hernandez-Aranda2, Andrew Forbes3, and Carmelo Rosales-Guzmán1、4、*
Author Affiliations
  • 1Wang Da-Heng Collaborative Innovation Center, Heilongjiang Provincial Key Laboratory of Quantum Manipulation and Control, Harbin University of Science and Technology, Harbin 150080, China
  • 2Photonics and Mathematical Optics Group, Tecnologico de Monterrey, Monterrey 64849, Mexico
  • 3School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
  • 4Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Colonia Lomas del campestre, 37150 León, Gto., Mexico
  • 5e-mail: b.pegar@tec.mx
  • show less
    DOI: 10.1364/PRJ.416342 Cite this Article Set citation alerts
    Xiao-Bo Hu, Benjamin Perez-Garcia, Valeria Rodríguez-Fajardo, Raul I. Hernandez-Aranda, Andrew Forbes, Carmelo Rosales-Guzmán. Free-space local nonseparability dynamics of vector modes[J]. Photonics Research, 2021, 9(4): 439 Copy Citation Text show less
    References

    [1] C. Rosales-Guzmán, B. Ndagano, A. Forbes. A review of complex vector light fields and their applications. J. Opt., 20, 123001(2018).

    [2] F. Gori, M. Santarsiero, R. Borghi. Vector mode analysis of a young interferometer. Opt. Lett., 31, 858-860(2006).

    [3] J. Eberly. Shimony–wolf states and hidden coherences in classical light. Contemp. Phys., 56, 407-416(2015).

    [4] X.-F. Qian, A. Vamivakas, J. Eberly. Entanglement limits duality and vice versa. Optica, 5, 942-947(2018).

    [5] J. H. Eberly, X.-F. Qian, A. A. Qasimi, H. Ali, M. A. Alonso, R. Gutiérrez-Cuevas, B. J. Little, J. C. Howell, T. Malhotra, A. N. Vamivakas. Quantum and classical optics–emerging links. Phys. Scr., 91, 063003(2016).

    [6] Y. Shen, X. Yang, D. Naidoo, X. Fu, A. Forbes. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica, 7, 820-831(2020).

    [7] T. Konrad, A. Forbes. Quantum mechanics and classical light. Contemp. Phys., 60, 1-22(2019).

    [8] A. Forbes, A. Aiello, B. Ndagano. Classically entangled light. Progress in Optics, 99-153(2019).

    [9] R. J. C. Spreeuw. A classical analogy of entanglement. Found. Phys., 28, 361-374(1998).

    [10] X.-F. Qian, J. H. Eberly. Entanglement and classical polarization states. Opt. Lett., 36, 4110-4112(2011).

    [11] X.-F. Qian, A. N. Vamivakas, J. H. Eberly. Emerging connections: classical and quantum optics. Opt. Photon. News, 28, 34-41(2017).

    [12] K. H. Kagalwala, G. Di Giuseppe, A. F. Abouraddy, B. E. Saleh. Bell’s measure in classical optical coherence. Nat. Photonics, 7, 72-78(2013).

    [13] B. Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad, A. Forbes. Characterizing quantum channels with non-separable states of classical light. Nat. Phys., 13, 397-402(2017).

    [14] E. Toninelli, B. Ndagano, A. Vallés, B. Sephton, I. Nape, A. Ambrosio, F. Capasso, M. J. Padgett, A. Forbes. Concepts in quantum state tomography and classical implementation with intense light: a tutorial. Adv. Opt. Photon., 11, 67-134(2019).

    [15] B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzmán, A. Forbes. Creation and detection of vector vortex modes for classical and quantum communication. J. Lightwave Technol., 36, 292-301(2018).

    [16] G. Milione, M. P. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, A. E. Willner. 4 × 20  Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Opt. Lett., 40, 1980-1983(2015).

    [17] Y. Zhao, J. Wang. High-base vector beam encoding/decoding for visible-light communications. Opt. Lett., 40, 4843-4846(2015).

    [18] X.-B. Hu, B. Zhao, Z.-H. Zhu, W. Gao, C. Rosales-Guzmán. In situ detection of a cooperative target’s longitudinal and angular speed using structured light. Opt. Lett., 44, 3070-3073(2019).

    [19] F. Töppel, A. Aiello, C. Marquardt, E. Giacobino, G. Leuchs. Classical entanglement in polarization metrology. New J. Phys., 16, 073019(2014).

    [20] S. Berg-Johansen, F. Töppel, B. Stiller, P. Banzer, M. Ornigotti, E. Giacobino, G. Leuchs, A. Aiello, C. Marquardt. Classically entangled optical beams for high-speed kinematic sensing. Optica, 2, 864-868(2015).

    [21] V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, W. Krolikowski. A long-range polarization-controlled optical tractor beam. Nat. Photonics, 8, 846-850(2014).

    [22] N. Bhebhe, C. Rosales-Guzmán, A. Forbes. Classical and quantum analysis of propagation invariant vector flat-top beams. Appl. Opt., 57, 5451-5458(2018).

    [23] N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, A. Forbes. A vector holographic optical trap. Sci. Rep., 8, 17387(2018).

    [24] Y. Kozawa, S. Sato. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Opt. Express, 18, 10828-10833(2010).

    [25] S. E. Skelton, M. Sergides, R. Saija, M. A. Iatì, O. M. Maragó, P. H. Jones. Trapping volume control in optical tweezers using cylindrical vector beams. Opt. Lett., 38, 28-30(2013).

    [26] M. G. Donato, S. Vasi, R. Sayed, P. H. Jones, F. Bonaccorso, A. C. Ferrari, P. G. Gucciardi, O. M. Maragó. Optical trapping of nanotubes with cylindrical vector beams. Opt. Lett., 37, 3381-3383(2012).

    [27] B. Roxworthy, K. Toussaint. Optical trapping with π-phase cylindrical vector beams. New J. Phys., 12, 073012(2010).

    [28] M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, T. Graf. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. Opt. Express, 18, 22305-22313(2010).

    [29] P. Török, P. Munro. The use of Gauss-Laguerre vector beams in STED microscopy. Opt. Express, 12, 3605-3617(2004).

    [30] X. Hao, C. Kuang, T. Wang, X. Liu. Effects of polarization on the de-excitation dark focal spot in STED microscopy. J. Opt., 12, 115707(2010).

    [31] S. Segawa, Y. Kozawa, S. Sato. Resolution enhancement of confocal microscopy by subtraction method with vector beams. Opt. Lett., 39, 3118-3121(2014).

    [32] I. Moreno, J. A. Davis, M. M. Sánchez-López, K. Badham, D. M. Cottrell. Nondiffracting Bessel beams with polarization state that varies with propagation distance. Opt. Lett., 40, 5451-5454(2015).

    [33] S. Fu, S. Zhang, C. Gao. Bessel beams with spatial oscillating polarization. Sci. Rep., 6, 30765(2016).

    [34] J. A. Davis, I. Moreno, K. Badham, M. M. Sánchez-López, D. M. Cottrell. Nondiffracting vector beams where the charge and the polarization state vary with propagation distance. Opt. Lett., 41, 2270-2273(2016).

    [35] P. Li, Y. Zhang, S. Liu, H. Cheng, L. Han, D. Wu, J. Zhao. Generation and self-healing of vector Bessel-Gauss beams with variant state of polarizations upon propagation. Opt. Express, 25, 5821-5831(2017).

    [36] P. Li, D. Wu, Y. Zhang, S. Liu, Y. Li, S. Qi, J. Zhao. Polarization oscillating beams constructed by copropagating optical frozen waves. Photon. Res., 6, 756-761(2018).

    [37] P. Li, Y. Zhang, S. Liu, L. Han, H. Cheng, F. Yu, J. Zhao. Quasi-Bessel beams with longitudinally varying polarization state generated by employing spectrum engineering. Opt. Lett., 41, 4811-4814(2016).

    [38] E. Otte, C. Rosales-Guzmán, B. Ndagano, C. Denz, A. Forbes. Entanglement beating in free space through spin-orbit coupling. Light Sci. Appl., 7, 18009(2018).

    [39] M. A. Bandres, J. C. Gutiérrez-Vega, S. Chávez-Cerda. Parabolic nondiffracting optical wave fields. Opt. Lett., 29, 44-46(2004).

    [40] C. López-Mariscal, M. A. Bandres, J. C. Gutiérrez-Vega, S. Chávez-Cerda. Observation of parabolic nondiffracting optical fields. Opt. Express, 13, 2364-2369(2005).

    [41] M. A. Bandres. Accelerating parabolic beams. Opt. Lett., 33, 1678-1680(2008).

    [42] B. M. Rodrguez-Lara, R. Jáuregui. Dynamical constants of structured photons with parabolic-cylindrical symmetry. Phys. Rev. A, 79, 055806(2009).

    [43] A. Ruelas, S. Lopez-Aguayo, J. C. Gutiérrez-Vega. Engineering parabolic beams with dynamic intensity profiles. J. Opt. Soc. Am. A, 30, 1476-1483(2013).

    [44] J. C. Gutiérrez-Vega, M. A. Bandres. Helmholtz–Gauss waves. J. Opt. Soc. Am. A, 22, 289-298(2005).

    [45] M. McLaren, T. Konrad, A. Forbes. Measuring the nonseparability of vector vortex beams. Phys. Rev. A, 92, 023833(2015).

    [46] A. Selyem, C. Rosales-Guzmán, S. Croke, A. Forbes, S. Franke-Arnold. Basis-independent tomography and nonseparability witnesses of pure complex vectorial light fields by Stokes projections. Phys. Rev. A, 100, 063842(2019).

    [47] A. Manthalkar, I. Nape, N. T. Bordbar, C. Rosales-Guzmán, S. Bhattacharya, A. Forbes, A. Dudley. All-digital stokes polarimetry with a digital micromirror device. Opt. Lett., 45, 2319-2322(2020).

    [48] B. Zhao, X.-B. Hu, V. Rodríguez-Fajardo, A. Forbes, W. Gao, Z.-H. Zhu, C. Rosales-Guzmán. Determining the non-separability of vector modes with digital micromirror devices. Appl. Phys. Lett., 116, 091101(2020).

    [49] B. Ndagano, H. Sroor, M. McLaren, C. Rosales-Guzmán, A. Forbes. Beam quality measure for vector beams. Opt. Lett., 41, 3407-3410(2016).

    [50] F. Olver, National Institute, D. Lozier, R. Boisvert, C. Clark. NIST Handbook of Mathematical Functions Hardback and CD-ROM(2010).

    [51] C. Rosales-Guzmán, N. Bhebhe, A. Forbes. Simultaneous generation of multiple vector beams on a single SLM. Opt. Express, 25, 25697-25706(2017).

    [52] C. Rosales-Guzmán, X.-B. Hu, A. Selyem, P. Moreno-Acosta, S. Franke-Arnold, R. Ramos-Garcia, A. Forbes. Polarisation-insensitive generation of complex vector modes from a digital micromirror device. Sci. Rep., 10, 10434(2020).

    [53] Y. Li, X.-B. Hu, B. Perez-Garcia, B. Zhao, W. Gao, Z.-H. Zhu, C. Rosales-Guzmán. Classically entangled Ince–Gaussian modes. Appl. Phys. Lett., 116, 221105(2020).

    [54] D. H. Goldstein. Polarized Light(2011).

    [55] B. Zhao, X.-B. Hu, V. Rodríguez-Fajardo, Z.-H. Zhu, W. Gao, A. Forbes, C. Rosales-Guzmán. Real-time Stokes polarimetry using a digital micromirror device. Opt. Express, 27, 31087-31093(2019).

    [56] J. W. Goodman. Introduction to Fourier Optics(2017).

    [57] S. Scholes, R. Kara, J. Pinnell, V. Rodríguez-Fajardo, A. Forbes. Structured light with digital micromirror devices: a guide to best practice. Opt. Eng., 59, 041202(2019).

    [58] S. Yang, S. A. Ponomarenko, Z. D. Chen. Coherent pseudo-mode decomposition of a new partially coherent source class. Opt. Lett., 40, 3081-3084(2015).

    [59] P. Réfrégier. Polarization degree of optical waves with non-Gaussian probability density functions: Kullback relative entropy-based approach. Opt. Lett., 30, 1090-1092(2005).

    Xiao-Bo Hu, Benjamin Perez-Garcia, Valeria Rodríguez-Fajardo, Raul I. Hernandez-Aranda, Andrew Forbes, Carmelo Rosales-Guzmán. Free-space local nonseparability dynamics of vector modes[J]. Photonics Research, 2021, 9(4): 439
    Download Citation