• Photonics Research
  • Vol. 9, Issue 4, 439 (2021)
Xiao-Bo Hu1, Benjamin Perez-Garcia2、5, Valeria Rodríguez-Fajardo3, Raul I. Hernandez-Aranda2, Andrew Forbes3, and Carmelo Rosales-Guzmán1、4、*
Author Affiliations
  • 1Wang Da-Heng Collaborative Innovation Center, Heilongjiang Provincial Key Laboratory of Quantum Manipulation and Control, Harbin University of Science and Technology, Harbin 150080, China
  • 2Photonics and Mathematical Optics Group, Tecnologico de Monterrey, Monterrey 64849, Mexico
  • 3School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
  • 4Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Colonia Lomas del campestre, 37150 León, Gto., Mexico
  • 5e-mail: b.pegar@tec.mx
  • show less
    DOI: 10.1364/PRJ.416342 Cite this Article Set citation alerts
    Xiao-Bo Hu, Benjamin Perez-Garcia, Valeria Rodríguez-Fajardo, Raul I. Hernandez-Aranda, Andrew Forbes, Carmelo Rosales-Guzmán. Free-space local nonseparability dynamics of vector modes[J]. Photonics Research, 2021, 9(4): 439 Copy Citation Text show less

    Abstract

    One of the most prominent features of quantum entanglement is its invariability under local unitary transformations, which implies that the degree of entanglement or nonseparability remains constant during free-space propagation, true for both quantum and classically entangled modes. Here we demonstrate an exception to this rule using a carefully engineered vectorial light field, and we study its nonseparability dynamics upon free-space propagation. We show that the local nonseparability between the spatial and polarization degrees of freedom dramatically decays to zero while preserving the purity of the state and hence the global nonseparability. We show this by numerical simulations and corroborate it experimentally. Our results evince novel properties of classically entangled modes and point to the need for new measures of nonseparability for such vectorial fields, while paving the way for novel applications for customized structured light.
    TPG±(r;a)=PGe(r;a)±iPGo(r;a).

    View in Article

    PGe(r;a)=exp(ikt22kzμ)GB(r)|Γ1|2π2Pe(2ktμξ;a)×Pe(2ktμη;a),

    View in Article

    GB(r)=exp(ikz)μexp(r2μω02),

    View in Article

    TPGV(r;a)=12[TPG+(r;a)e^R+TPG(r;a)exp(iϕ)e^L],

    View in Article

    C=1(S1S0)2(S2S0)2(S3S0)2,

    View in Article

    S0=I0,S1=2IHS0,S2=2IDS0,S3=2IRS0,

    View in Article

    Xiao-Bo Hu, Benjamin Perez-Garcia, Valeria Rodríguez-Fajardo, Raul I. Hernandez-Aranda, Andrew Forbes, Carmelo Rosales-Guzmán. Free-space local nonseparability dynamics of vector modes[J]. Photonics Research, 2021, 9(4): 439
    Download Citation