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One of the most prominent features of quantum entanglement is its invariability under local unitary transfor-
mations, which implies that the degree of entanglement or nonseparability remains constant during free-space
propagation, true for both quantum and classically entangled modes. Here we demonstrate an exception to this
rule using a carefully engineered vectorial light field, and we study its nonseparability dynamics upon free-space
propagation. We show that the local nonseparability between the spatial and polarization degrees of freedom
dramatically decays to zero while preserving the purity of the state and hence the global nonseparability. We
show this by numerical simulations and corroborate it experimentally. Our results evince novel properties of
classically entangled modes and point to the need for new measures of nonseparability for such vectorial fields,
while paving the way for novel applications for customized structured light. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.416342

1. INTRODUCTION

It is well known that entanglement is invariant to local unitary
transformations. An example of such is the well-known fact that
the degree of entanglement remains unmodified upon free-
space propagation. Crucially, nonseparability, the fundamental
aspect of entanglement, is not exclusive to quantum systems,
and this principle applies to both nonlocal and local entangle-
ment at the single- and multiphoton levels. The former is ob-
served between photons that simultaneously exist in physically
separated locations, and the latter between the internal degrees
of freedom of photons. Classical states of light such as complex
vectorial light fields [1] also exhibit local entanglement, attrib-
uted to the nonseparability between their spatial and polariza-
tion degrees of freedom (DoFs). Here it is worth clarifying what
is meant by such a statement, and to this end we follow the
terminology of several seminal works [2–5]. The definition
of entanglement is simply the nonseparability of sums of prod-
uct states that exist in different vector spaces. While there are
many options for the DoFs to use with optical fields, e.g., spa-
tial, temporal, frequency, mode index, and even more exotic
choices such as path and trajectory [6], here we are interested
in the vector spaces made of the polarization and spatial modes,
defined by our two DoFs, the former two dimensional and the

latter infinite dimensional. The resulting Hilbert space describ-
ing the field is the tensor product of the two, i.e., an infinite
number of two-dimensional spaces. We will consider the dy-
namics of one pure state vector in such a Hilbert space. We
adopt conventional notation in the literature and call this state
a “vector beam” if the polarization is nonhomogeneously dis-
tributed in space and a “scalar beam” if homogeneously distrib-
uted. Our interest here is in the former: vector beams
nonseparable in the polarization and spatial mode DoFs, con-
troversially called “classically entangled” [5,7–9]. Despite the
controversy, it is becoming clear that some quantum systems
can be tested and probed with classically entangled light
[10–12]. For example, classical entanglement has been ex-
ploited in quantum error correction [13], quantum state
tomography [14], optical communications [15–17], and opti-
cal metrology [18–20]. Additionally, the tightly focusing prop-
erties of complex vector modes have been exploited in the field
of optical tweezers [21–27], micromachining [28], as well as in
super-resolution microscopy [29–31].

Recently, there has been an increasing interest in the engi-
neering of vector light beams whose polarization state varies
upon free-space propagation. Most of these have focused on
the generation of pure vector beams that oscillate from one vec-
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tor state to another while keeping a constant degree of nonse-
parability [32–37]. A more interesting case, which encloses the
previous cases, reported the generation of light beams whose
degree of nonseparability oscillates between scalar and vector
modes, offering a tool for the on-demand delivery of specific
states to desired positions [38]. Such oscillating modes are gen-
erated from the superposition of two counterpropagating vector
beams, whose implementation can be cumbersome. While
these studies have only considered cylindrical vector vortex
modes, the use of new symmetries (spatial shapes), such as para-
bolic or elliptical, could potentially allow us to unveil properties
of vector modes that up to now have remained hidden.

Here we demonstrate a new class of vector beam whose de-
gree of nonseparability features interesting dynamics as it prop-
agates, evolving from a nonhomogeneously polarized vector
beam to a quasi-homogeneously polarized beam. Such modes
are generated from a nonseparable superposition of orthogonal
parabolic beams, which are natural solutions to the Helmholtz
equation in parabolic cylindrical coordinates [39–44], and
orthogonal polarization states. The entanglement dynamics
are quantified through a modified measurement of concurrence
C , commonly used to measure the degree of nonseparability in
vector modes [45–49]. It is noteworthy that, while it is tempt-
ing to view these beams as separable in their two degrees of
freedom, vindicated by the local measure of C , their global con-
currence remains unchanged.

2. THEORETICAL BACKGROUND

The concept presented in this paper is schematically shown in
Fig. 1. At the generation plane (z � 0), the parabolic vector
beam possesses a maximum degree of nonseparability, clearly
evinced as a nonhomogeneous polarization distribution, over-
lapped with the intensity profile of the vector mode. Upon
propagation, the polarization structure of the beam evolves
from completely mixed and locally nonseparable to completely
unmixed and locally separable, the latter reached in the far
field (z � ∞).

The engineered vector beams are constructed from a super-
position of traveling parabolic-Gaussian (TPG�) beams.
Mathematically, TPG beams are given by superposition of
the even and odd parabolic-Gaussian (PG) beams as [39]

TPG��r; a� � PGe�r; a� � iPGo�r; a�: (1)

Here the functions PGe,o�·� are the even and odd PG modes
of the parabolic cylindrical coordinates r � �η, ξ, z�, given
by [44]

PGe�r; a� � exp
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where Pe�·� and Po�·� are the even and odd solutions of
the parabolic cylindrical differential equation �d2∕dx2�
�x2∕4 − a��P�x; a� � 0, and a ∈ �−∞,∞� represents the con-
tinuous order of the beam. Importantly, the solutions Pe�·� and
Po�·� can be written in terms of Kummer confluent hypergeo-
metric functions [50], which are available in many numerical
libraries. Furthermore, Γ1 � Γ��1∕4� � �1∕2�ia� and Γ3 �
Γ��3∕4� � �1∕2�ia�, with Γ�·� the gamma function; and kt
is the transverse component of the wave vector k, whose mag-
nitude is related to the longitudinal component kz as k2 �
k2t � k2z . Additionally, GB�r� is the fundamental Gaussian
beam given by

GB�r� � exp�ikz�
μ

exp

�
−

r2

μω2
0

�
, (3)

where μ � μ�z� � 1� iz∕zr with zr � kω2
0∕2 being the

usual Rayleigh range of a Gaussian beam. The parabolic coor-
dinates r � �η, ξ, z� are related to the Cartesian coordinates as
x � �η2 − ξ2�∕2 and y � ηξ, where η ∈ �0,∞� and
ξ ∈ �−∞,∞�. For values γ � ktωo ≫ 1, the PG beam prop-
agates in a nondiffracting way within the range �−zmax, zmax�,
where zmax � ω0k∕kt .

The traveling parabolic-Gaussian vector (TPGV) beams are
generated as a nonseparable weighted superposition of the
polarization and spatial degrees of freedom. Here the polariza-
tion degree of freedom is encoded in the circular polarization
basis while the spatial degree of freedom is precisely encoded in
the TPG��·� modes. Mathematically, such superposition can
be written as

TPGV�r; a� � 1ffiffiffi
2

p �TPG��r; a�êR � TPG−�r; a� exp�iϕ�êL�,

(4)

where the unitary vectors êR and êL represent the right and left
circular states of polarization, respectively. Finally, the term
exp�iϕ� (ϕ ∈ �−π∕4, π∕4�) is a phase difference between both
constituting modes.

An example of such a superposition is schematically illus-
trated in Fig. 2 using the modes TPG��r; 3� and TPG−�r; 3�,

Fig. 1. Schematic representation of a classically entangled light
mode featuring a separation of both degrees of freedom upon free
space propagation. Right and left circular polarizations are represented
by orange and green ellipses, while linear polarization is represented by
gray lines.
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where the back panels show the phase distribution, whereas the
front ones show the intensity profile overlapped with the cor-
responding polarization distribution. In Fig. 2(a), we present
the near field of each individual component (left and middle
panels) as well as the complex superposition (right panel),
and in Fig. 2(b) we show their corresponding far-field counter-
parts. Notice the difference between the near field, completely
mixed and locally nonseparable, and the far field, completely
unmixed and locally separable.

3. EXPERIMENTAL GENERATION OF TPGV
MODES

A schematic representation of our experimental setup for gen-
erate arbitrary vector modes is depicted in Fig. 3(a). A horizon-
tally polarized laser beam (λ � 532 nm) is expanded and
collimated by lenses L1 and L2, and subsequently transformed
into a diagonally polarized beam by use of a half-wave plate
(HWP) at 22.5°. A polarizing beam splitter (PBS) separates

the beam into its horizontal and vertical polarization compo-
nents. Both beams are then directed, one with the help of a
mirror (M), to a polarization-insensitive digital micromirror de-
vice (DMD, DLP Light Crafter 6500 from Texas Instruments),
impinging under slightly different angles (≈1.5∘) at the center
of the DMD. Here there is a multiplexed hologram consisting
of the superposition of two independent holograms with
unique linear phase gratings, each corresponding to the consti-
tuting wave fields of Eq. (4), TPG� and TPG− modes.
Additional details about the generation and multiplexing of
the holograms can be found in Refs. [46,51–53]. In this
way, the period of the grating is used to ensure the first diffrac-
tion order of each beam to propagate along a common axis,
where the vector beam is generated. Once generated, a spatial
filter (SF) placed at the focusing point of a telescope composed
by lenses L3 and L4 removes all higher diffraction orders. A
quarter-wave plate (QWP1) is added to change the TPG mode
from the linear (êH , êV ) to the circular polarization basis
(êL, êR). In order to reach the far field, a long focal distance
lens L5 (f � 300 mm) was inserted in the path of the beam.
The use of a long focal distance lens is crucial to avoid well-
known polarization effects caused by strong focusing, which
allow us to neglect the polarization component of the field
along the propagation direction. Finally, a charge-coupled de-
vice (CCD; FL3-U3-120S3C-C with a resolution of
4000 × 3000 pixels and a pixel size of 1.55 μm) mounted
on a rail parallel to the propagation direction of the beam
was used to record the intensity of the beam.

To quantify the degree of nonseparability we relied on a
well-known measure from quantum mechanics, the concur-
rence C , which assigns a value in the range [0,1] to the degree
of entanglement [45–49]. The concurrence C is measured by
integrating the Stokes parameters Si, i � 0, 1, 2, 3 over the en-
tire transverse plane through the relation [46,47]

C �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where Si �
RR

R2 SidA. The Stokes parameters Si are computed
from a set of four intensity measurements as [54]

Fig. 2. Phase (back panels) and polarization distribution overlapped
with the intensity profiles (front panels) of the scalar modes
TPG��r; a�êR (left) and TPG−�r; a�êL (middle), which are combined
to generate the TPGV mode (right) at the (a) near and (b) far field. In
the case of the TPGVmode, we depict the phase of the complex Stokes
field S � S1 � iS2.

Fig. 3. (a) To experimentally generate the TPGV mode, we used a novel approach based on a digital micromirror device (DMD). A laser beam
expanded and collimated (by lenses L1 and L2) is diagonally polarized with a half-wave plate (HWP1) and split by a polarizing beam splitter (PBS)
according to its polarization components. The two beams are redirected to the DMD, impinging at slightly different angles but overlapped at the
center of a binary multiplexed hologram where the TPG� and TPG− scalar modes are encoded, each with a unique linear grating. After the DMD,
the first diffraction order of each beam overlaps along a common propagation axis where the TPGV is generated. A spatial filter (SF) placed at the
focusing plane of a telescope formed by lenses L3 and L4 removes all higher diffraction orders. A quarter-wave plate (QWP1) transforms the mode
from the linear to the circular polarization basis. The nonseparability dynamics are quantified through Stokes polarimetry, for which a set of four
intensities are recorded with a charge-coupled device (CCD) camera. (b) Experimental Stokes parameters S1, S2, and S3 of the TPGV mode
TPGV�r; 3�. (c) Intensity profile overlapped with the reconstructed polarization distribution.
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S0 � I 0, S1 � 2IH − S0,

S2 � 2ID − S0, S3 � 2IR − S0, (6)

where I0 is the total intensity of the mode and IH , ID, and IR
the intensity of the horizontal, diagonal, and right-handed
polarization components, respectively. As illustrated in
Fig. 3(a), such intensity measurements were acquired by a
CCD camera through the combination of a linear polarizer
(P) and a quarter-wave plate (QWP2) [55]. Specifically, the
intensities of the horizontal (IH ) and diagonal (ID) polarization
components were obtained by passing the beam through a lin-
ear polarizer at 0° and 45°, respectively, whereas intensity cor-
responding to the RCP component (IR) was obtained by
passing the beam simultaneously through a QWP at 45°
and a linear polarizer at 90°. As an example, Fig. 3(b) shows
the experimental Stokes parameters S0, S1, S2, and S3 for
the specific mode TPGV�r; 3� at z � 0. Such parameters were
used to reconstruct the transverse polarization distribution on a
20 × 20 grid as shown in Fig. 3(c). Here, for the sake of clarity,
we also display the transverse intensity profile. For this specific
example, we have S1∕S0 � 0.12, S2∕S0 � 0.09, and
S3∕S0 � −0.02, which upon substitution in Eq. (5) yield
the value C � 0.98, which, as expected, corresponds to a max-
imally entangled mode.

4. ANALYSIS OF THE NONSEPARABILITY
DYNAMICS

In this section, we present a detailed analysis of the propagation
dynamics of our TPGV beams. This analysis is performed ex-
perimentally and through numerical simulations using the
Rayleigh–Sommerfeld diffraction theory [56]. As a first evi-
dence of the evolution dynamics, we reconstructed the polari-
zation distribution at various transverse planes. A representative
set of results are displayed in Fig. 4(a) for the case TPGV�r; 3�
for ω0 � 2 mm and kt � 22.5 mm−1, for which zmax �
1050 mm. Here the transverse intensity profile is shown over-
lapped with its corresponding polarization distribution at four
different planes, namely, z � 0, z � 1.2zmax, z � 3.0zmax, and
z � ∞. Experimentally, these distances correspond to the val-
ues z 0 � 243 mm, z 0 � 274 mm, and z 0 � f , obtained
through the well-known equation of a thin lens, 1∕z � 1∕z 0 �
1∕f . As shown, the plane z � 0 features a vector mode with a
nonhomogeneous polarization distribution. For z > 0, the
beam evolves from completely mixed and locally nonseparable
to completely unmixed and locally separable, featuring a
smooth transition from linear to circular polarization. For com-
parison, in Fig. 4(b) we show the theoretical counterparts,
where the same behavior is observed. It is worth mentioning
that the demagnification of the beam as a function of propa-
gation considerably reduces the number of pixels forming the
beam’s intensity, which could in principle affect the resolution
of the reconstructed polarization. Nonetheless, the use of a
high-resolution CCD (in our case a CCD camera with
1.55 μm pixel size) ensures that even at the focal plane we have
enough pixels for a proper reconstruction. In addition, for a
better comparison between experiment and numerical simula-
tions, we used identical spatial resolutions. Note that the focus-
ing experimental beam acquires an elliptical shape, which

results from optical aberrations caused by the nonhomogeneous
flattening of the DMD’s screen, which can be corrected as ex-
plained in Ref. [57].

With the idea of better visualizing the evolution of polari-
zation upon propagation, we mapped the different states of
polarization acquired at each plane onto the well-known
Poincaré sphere (PS), in which the different polarization states
are associated to unique points on the surface of the sphere [54]
as shown in Figs. 4(c) and 4(d) for experiment and numerical
simulation, respectively. Here the coordinate axes are given in
terms of the Stokes parameters S1, S2, and S3. For z � 0, all
the states of polarization in the transverse plane are linear and
therefore mapped to points along the equator. For z > 0, such
linear polarization states gradually evolve from linear into ellip-
tical and finally to circular. In the PS, this is seen as points along
a spiral trajectory connecting the north and south poles, in the
intermediate planes, and in the far field as points on the north
and south poles. Notice that even though the polarization
structure evolves from completely mixed to completely un-
mixed, the amount of right- and left-elliptically polarized pho-
tons remains in equilibrium.

One way to quantify the nonseparability dynamics of the
TPGV modes, as a function of the propagation distance z
[Eq. (5)], is through the computation of the concurrence C .
Nonetheless, the concurrence of the whole beam, which we call
global concurrence, yields C ≈ 1 for every propagation plane.
The reason being, as mentioned before, the amount of left- and

Fig. 4. (a) Experimental and (b) simulated evolution of intensity
and polarization distribution of TPGV beams as a function of propa-
gation distance. (c) Experimental and (d) simulated representation of
the transverse polarization distribution on a Poincaré sphere, each in
correspondence with the planes shown in (a) and (b).
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right-elliptically polarized photons is always the same regardless
of the propagation distance. Hence, even though locally all the
Stokes parameters might have nonzero values, globally S1, S2,
and S3 will be always zero, resulting in Si �

RR
R2 SidA � 0 for

i � 1, 2, 3, which implies C � 1 for all values of z. This im-
plies that the global concurrence fails to account for the changes
in the polarization distribution that are observed in Fig. 4. This
can be illustrated by computing a local concurrence CL, i.e., the
concurrence of small sections of the beam, across the entire
transverse plane and at different propagation distances. This
is shown in Fig. 5(a), where we performed a numerical simu-
lation of CL along the vertical direction across the beam and as
a function of the propagation distance. Here, for each
z ∈ �0,4zmax�, we sectioned the beam from top to bottom into
50 rectangular regions (2 mm × 40 μm each) and computed
the concurrence on each of them. As can be seen, for short
propagation distances z ≈ 0, the concurrence stays closer to
one for all beam positions, which is expected since at the origin
plane both degrees of freedom are completely mixed over the
full transverse plane. Figure 5(b) shows an example of the area
over which C was computed for the specific case z � 0. This
area corresponds to the solid line shown in Fig. 5, which illus-
trates a decay of C as a function of z. Notice that in the center
of the beam C remains constant regardless of the propagation
distance. To further understand this, in Fig. 5(c) we show the
integration area for this particular position at z � 3zmax, which
clearly shows that even though in this region both polarization
states are completely separated, it contains the same amount of
right- and left-elliptically polarized photons, yielding C � 1.
The corresponding concurrence as a function of the propaga-
tion area for this section is shown as a dashed line in Fig. 5. In
addition to the simulation, in this figure we also present exper-
imental values of the concurrence for the cases z∕zmax �
0, 0.2, 0.7, 1.3, 2.2, and 3.6, shown as points over the 3D sur-
face, which agree very well with the simulation. Figure 5 clearly
evinces that local concurrence is the appropriate measure to
quantify the decay in the degree of local nonseparability, even

though it fails in the center of the beam, where both polariza-
tion components are present. Some studies have explored the
distribution of polarization states on the PS [12,59]; however,
they do not address their spatial distribution across the trans-
verse plane of the beam.

5. DISCUSSION

There are several mechanisms by which the concurrence of an
initially pure state with maximum nonseparability could decay,
but perhaps the most prominent in the context of spatial modes
is an evolution toward a mixed state (by interacting with an
open system, for example) or by modal scattering and sub-
sequent subspace concatenation (ignoring the full expansion
in the vector space and considering only the initial subspace).
Neither happens here. Instead, our carefully constructed exam-
ple highlights the counterintuitive dynamics at play: the local
concurrence changes dramatically with propagation, eventually
decreasing to zero everywhere; yet the global concurrence re-
mains unchanged with propagation, consistent with the fact
that free space is a unitary channel, and thus the state vector
remains pure, i.e., there is no evolution to a mixed state and no
modal scattering. Colloquially, it appears as if the initial beam is
split into two homogeneously polarized parts, and so appears
separable, it yet remains fully nonseparable in our Hilbert
space, as it remains one coherent mode. Our work suggests
the need for new or adapted parameters to quantify the non-
homogeneous distribution of polarization states for vector
beams. It is intriguing to wonder if our test case may be viewed
as a Young’s experiment in reverse, with our initial beam mim-
icking interference to the final beam reminiscent of two slits.
Further, this interesting behavior may benefit from recent in-
sights into polarization coherence, where an exact equality link-
ing concurrence, visibility, and duality has been obtained [4].
These and other open questions are exciting challenges for fol-
low-up work.

6. CONCLUSIONS

In this work we demonstrated a novel kind of complex light
field that upon free-space propagation evolves from maximally
mixed and locally nonseparable to completely unmixed and lo-
cally separable. More precisely, we generated a vector beam with
a nonhomogeneous polarization distribution that upon free-
space propagation evolves into a homogeneously polarized
mode. Such behavior is directly observed at various propagation
distances through a reconstruction of the transverse polariza-
tion distribution performed via Stokes polarimetry. This is fur-
ther evinced by mapping the entire polarization distribution at
each plane onto the Poincaré sphere, which exhibits an evolu-
tion of the state of polarization from the equator to the poles.
Such evolution happens along spirals connecting the north and
south poles. A quantification of this free-pace propagation dy-
namics was performed through the concurrence C , which takes
the value C � 1 for vector states and C � 0 for scalar beams.
We noted that a measure of the global concurrence yields a
constant value, while when measuring this in smaller sections
of the beam, what we called the “local concurrence,” it clearly
shows a decrease as a function of the propagation distance,
reaching the value C � 0 in the far field. In other words,

Fig. 5. (a) Concurrence as a function of propagation and transverse
coordinates. The solid and dashed lines show two examples of C as a
function of z for the specific sections of the beam, shown in (b) and
(c), which correspond to z � 0 and z � 4zmax, respectively. The sur-
face corresponds to numerical simulations and the data points to
experimental measurements at the propagation planes z∕zmax �
0, 0.2, 0.7, 1.3, 2.2, and 3.6. An analogous behavior has been re-
ported in the context of temporal coherence [58], where the generation
of beams whose local degree of temporal coherence varies as a function
of the time difference is discussed.
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by measuring the local concurrence we observe what appears to
be a decay in nonseparability, even though the entire state is
coherent and nonseparable. This evinces the need for an alter-
native definition of that takes into account the local variations
of the nonseparability, but this lies beyond the scope of this
research. Importantly, the nonseparability dynamics reported
here cannot be observed with cylindrical vector beams, as they
are an intrinsic property of parabolic vector beams. It is also
worth mentioning that the beam’s dynamics can be adjusted
through the parameter zmax, which depends on ω0 and kt .
Finally, these novel states of light offer a new tool for a wide
variety of applications in fields such as optical communications,
optical metrology, and optical tweezers, to mention a few.
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