• Journal of Infrared and Millimeter Waves
  • Vol. 43, Issue 1, 63 (2024)
Zi-Lu GUO1、2、3, Wen-Juan WANG1、4、**, Hui-Dan QU1, Liu--Yan FAN1, Yi-Cheng ZHU1、2, Ya-Jie WANG5, Chang-Lin ZHENG5, Xing-Jun WANG1, Ping-Ping CHEN1、*, and Wei LU1、2、3、4、***
Author Affiliations
  • 1State Key Laboratory of Infrared Physics,Shanghai Institute of Technology Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China
  • 4Shanghai Research Center for Quantum Sciences,Shanghai 201315,China
  • 5State Key Laboratory of Surface Physics and Department of Physics,Fudan University,Shanghai 200438,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2024.01.009 Cite this Article
    Zi-Lu GUO, Wen-Juan WANG, Hui-Dan QU, Liu--Yan FAN, Yi-Cheng ZHU, Ya-Jie WANG, Chang-Lin ZHENG, Xing-Jun WANG, Ping-Ping CHEN, Wei LU. Correlation between MBE deoxidation conditions and InGaAs/InP APD performance[J]. Journal of Infrared and Millimeter Waves, 2024, 43(1): 63 Copy Citation Text show less
    References

    [1] Xue LI, Hai-Mei GONG, Xiu-Mei SHAO et al. Recent advances in short wavelength infrared InGaAs focal plane arrays. J. Infrared Millim. Waves, 41, 129-138(2022).

    [2] N NAMEKATA, Y MAKINO, S INOUE. Single-photon detector for long-distance fiber-optic quantum key distribution. Optics Letters, 27, 954-6(2002).

    [3] J A MENDENHALL, L M CANDELL, P I HOPMAN et al. Design of an Optical Photon Counting Array Receiver System for Deep-Space Communications. Proceedings of the IEEE, 95, 2059-69(2007).

    [4] X JIANG, S WILTON, I KUDRYASHOV et al. InGaAsP/InP Geiger-mode APD-based LiDAR. Optical Sensing, Imaging, and Photon Counting(2018).

    [5] J S LEWIS, G LEO, G J BROWN et al. Development of an InGaAs SPAD 2D array for flash LIDAR. Quantum Sensing and Nano Electronics and Photonics XV(2018).

    [6] M B PANISH. Molecular Beam Epitaxy of GaAs and InP with Gas Sources for As and P. Journal of The Electrochemical Society, 127, 2729-33(1980).

    [7] Ying YANG, Hong-Zhen WANG, Liu-Yan FAN et al. Study on Molecular Beam Epitaxy of High indium InGaAs Films. J. Infrared Millim. Waves, 41, 987-994(2022).

    [8] F BASTIMAN, A G CULLIS. GaAs(001) planarization after conventional oxide removal utilising self-governed InAs QD site selection. Applied Surface Science, 256, 4269-71(2010).

    [9] A KHAIREH-WALIEH, A ARNOULT, S PLISSARD et al. Monitoring MBE Substrate Deoxidation via RHEED Image-Sequence Analysis by Deep Learning. Crystal Growth & Design, 23, 892-8(2023).

    [10] Y ZHANG, Y GU, W ZHENG et al. Anomalous arsenic diffusion at InGaAs/InP interface. Materials Research Express, 6(2018).

    [11] Z GUO, W WANG, Y LI et al. Material Defects and Dark Currents in InGaAs/InP Avalanche Photodiode Devices. IEEE Transactions on Electron Devices, 1-6(2022).

    [12] R K AHRENKIEL, R ELLINGSON, S JOHNSTON et al. Recombination lifetime of In0.53Ga0.47As as a function of doping density. Appl Phys Lett, 72, 3470-2(1998).

    [13] D XIAO, N SAPERMSAP, M SAFAR et al. On Synthetic Instrument Response Functions of Time-Correlated Single-Photon Counting Based Fluorescence Lifetime Imaging Analysis. Frontiers in Physics, 9(2021).

    [14] K M ROSFJORD, J K W YANG, E A DAULER et al. Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating. Opt Express, 14, 527-34(2006).

    [15] S EBNESAJJAD. Chapter 4 - Surface and Material Characterization Techniques. EBNESAJJAD S. Surface Treatment of Materials for Adhesive Bonding (Second Edition), 39-75(2014).

    [16] V V IYENGAR, B K NAYAK, M C GUPTA. Silicon PV devices based on a single step for doping, anti-reflection and surface passivation. Solar Energy Materials and Solar Cells, 94, 2205-11(2010).

    [17] J WEN, W J WANG, X R CHEN et al. Origin of large dark current increase in InGaAs/InP avalanche photodiode. Journal of Applied Physics, 123(2018).

    [18] E V PéAN, S DIMITROV, C S DE CASTRO et al. Interpreting time-resolved photoluminescence of perovskite materials. Physical Chemistry Chemical Physics, 22, 28345-58(2020).

    [19] M A RESHCHIKOV, M VOROBIOV, O ANDRIEIEV et al. Determination of the concentration of impurities in GaN from photoluminescence and secondary-ion mass spectrometry. Scientific Reports, 10, 2223(2020).

    [20] D J SMITH. Atomic-resolution structure imaging of defects and interfaces in compound semiconductors. Progress in Crystal Growth and Characterization of Materials, 66, 100498(2020).

    [21] T PAULAUSKAS, C BUURMA, E COLEGROVE et al. Atomic scale study of polar Lomer–Cottrell and Hirth lock dislocation cores in CdTe. Acta Crystallographica Section A, 70, 524-31(2014).

    [22] M W CHU, S C LIOU, C P CHANG et al. Emergent Chemical Mapping at Atomic-Column Resolution by Energy-Dispersive X-Ray Spectroscopy in an Aberration-Corrected Electron Microscope. Physical Review Letters, 104, 196101(2010).

    [23] M SCHäFER, W NAUMANN, T FINNBERG et al. UV/ozone-activated growth of oxide layers on InAs(001) surfaces and oxide desorption under arsenic pressure. Applied Surface Science, 158, 147-58(2000).

    [24] X ZHOU, Z-J LUO, X GUO et al. Surface segregation of InGaAs films by the evolution of reflection high-energy electron diffraction patterns. Chinese Physics B, 21(2012).

    [25] N K NAOKI KOBAYASHI, Y K YASUYUKI KOBAYASHI. As and P Desorption from III-V Semiconductor Surface in Metalorganic Chemical Vapor Deposition Studied by Surface Photo-Absorption. Japanese Journal of Applied Physics, 30, L1699(1991).

    [26] Q Y ZENG, W J WANG, J WEN et al. Dependence of dark current on carrier lifetime for InGaAs/InP avalanche photodiodes. Optical and Quantum Electronics, 47, 1671-7(2015).

    [27] S MOHAMMADNEJAD, F AGHAEI. Noise characteristics improvement of submicron InP/InGaAs avalanche photodiode for laser detection system. Opt Commun, 455124561(2020).

    [28] K LI, X DUAN, K LIU et al. High-speed and low dark current InGaAs/InAlAs avalanche photodiodes with P-type absorption layers. Optical and Quantum Electronics, 55, 422(2023).

    [29] Q Y ZENG, W J WANG, J WEN et al. Effect of surface charge on the dark current of InGaAs/InP avalanche photodiodes. Journal of Applied Physics, 115, 164512(2014).

    [30] J XU, X CHEN, W WANG et al. Extracting dark current components and characteristics parameters for InGaAs/InP avalanche photodiodes. Infrared Physics & Technology, 76(468-73(2016).

    [31] J SCHMIDT, A G ABERLE. Easy-to-use surface passivation technique for bulk carrier lifetime measurements on silicon wafers. Progress in Photovoltaics: Research and Applications, 6, 259-63(1998).

    [32] K L POLLOCK, J JUNGE, G HAHN. Detailed Investigation of Surface Passivation Methods for Lifetime Measurements on P-Type Silicon Wafers. IEEE Journal of Photovoltaics, 2, 1-6(2012).

    Zi-Lu GUO, Wen-Juan WANG, Hui-Dan QU, Liu--Yan FAN, Yi-Cheng ZHU, Ya-Jie WANG, Chang-Lin ZHENG, Xing-Jun WANG, Ping-Ping CHEN, Wei LU. Correlation between MBE deoxidation conditions and InGaAs/InP APD performance[J]. Journal of Infrared and Millimeter Waves, 2024, 43(1): 63
    Download Citation