• Photonics Research
  • Vol. 10, Issue 5, 1264 (2022)
Jianan Duan1、5、†,*, Bozhang Dong1、†, Weng W. Chow2, Heming Huang1, Shihao Ding1, Songtao Liu3、6, Justin C. Norman3、7, John E. Bowers3, and Frédéric Grillot1、4
Author Affiliations
  • 1LTCI, Télécom Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France
  • 2Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
  • 3Institute for Energy Efficiency, University of California Santa Barbara, Santa Barbara, California 93106, USA
  • 4Center for High Technology Materials, University of New-Mexico, Albuquerque, New Mexico 87106, USA
  • 5Current address: State Key Laboratory on Tunable Laser Technology, School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China
  • 6Current address: Ayar Labs, Santa Clara, California 95054, USA
  • 7Current address: Quintessent, Inc., Goleta, California 93117, USA
  • show less
    DOI: 10.1364/PRJ.448082 Cite this Article Set citation alerts
    Jianan Duan, Bozhang Dong, Weng W. Chow, Heming Huang, Shihao Ding, Songtao Liu, Justin C. Norman, John E. Bowers, Frédéric Grillot. Four-wave mixing in 1.3 μm epitaxial quantum dot lasers directly grown on silicon[J]. Photonics Research, 2022, 10(5): 1264 Copy Citation Text show less
    References

    [1] A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, V. Zwiller. Hybrid integrated quantum photonic circuits. Nat. Photonics, 14, 285-298(2020).

    [2] R. Helkey, A. A. Saleh, J. Buckwalter, J. E. Bowers. High-performance photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron., 25, 8300215(2019).

    [3] J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, J. E. Bowers. A review of high-performance quantum dot lasers on silicon. IEEE J. Quantum Electron., 55, 2000511(2019).

    [4] M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, H. Liu. Low-noise 1.3  μm InAs/GaAs quantum dot laser monolithically grown on silicon. Photon. Res., 6, 1062-1066(2018).

    [5] K. Nishi, K. Takemasa, M. Sugawara, Y. Arakawa. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron., 23, 1901007(2017).

    [6] C. Zhang, D. Liang, G. Kurczveil, A. Descos, R. G. Beausoleil. Hybrid quantum-dot microring laser on silicon. Optica, 6, 1145-1151(2019).

    [7] J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, J. E. Bowers. The importance of p-doping for quantum dot laser on silicon performance. IEEE J. Quantum Electron., 55, 2001111(2019).

    [8] F. Grillot, J. C. Norman, J. Duan, Z. Zhang, B. Dong, H. Huang, W. W. Chow, J. E. Bowers. Physics and applications of quantum dot lasers for silicon photonics. Nanophotonics, 9, 1271-1286(2020).

    [9] J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, F. Grillot. 1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon. IEEE Photon. Technol. Lett., 31, 345-348(2019).

    [10] J. C. Norman, D. Jung, Y. Wan, J. E. Bowers. Perspective: the future of quantum dot photonic integrated circuits. APL Photon., 3, 030901(2018).

    [11] W. W. Chow, F. Jahnke. On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog. Quantum Electron., 37, 109-184(2013).

    [12] B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, M. Lipson. On-chip mode-division multiplexing switch. Optica, 2, 530-535(2015).

    [13] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, K. Bergman. Recent advances in optical technologies for data centers: a review. Optica, 5, 1354-1370(2018).

    [14] S. Liu, D. Jung, J. Norman, M. Kennedy, A. Gossard, J. Bowers. 490  fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electron. Lett., 54, 432-433(2018).

    [15] B. Dong, H. Huang, J. Duan, G. Kurczveil, D. Liang, R. G. Beausoleil, F. Grillot. Frequency comb dynamics of a 1.3  μm hybrid-silicon quantum dot semiconductor laser with optical injection. Opt. Lett., 44, 5755-5758(2019).

    [16] P. Bardella, L. L. Columbo, M. Gioannini. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: a theoretical study. Opt. Express, 25, 26234-26252(2017).

    [17] X. Huang, A. Stintz, H. Li, L. Lester, J. Cheng, K. Malloy. Passive mode-locking in 1.3  μm two-section InAs quantum dot lasers. Appl. Phys. Lett., 78, 2825-2827(2001).

    [18] J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, D. J. Richardson. Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold. IEEE Photon. Technol. Lett., 15, 440-442(2003).

    [19] T. H. Tuan, T. Cheng, K. Asano, Z. Duan, W. Gao, D. Deng, T. Suzuki, Y. Ohishi. Optical parametric gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber with four zero-dispersion wavelengths. Opt. Express, 21, 20303-20312(2013).

    [20] M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, D. Moss. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat. Photonics, 2, 737-740(2008).

    [21] M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. Little, S. Chu, D. J. Moss. Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million. Opt. Express, 17, 14098-14103(2009).

    [22] J. R. Ong, R. Kumar, R. Aguinaldo, S. Mookherjea. Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal. IEEE Photon. Technol. Lett., 25, 1699-1702(2013).

    [23] G. P. Agrawal. Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers. J. Opt. Soc. Am. B, 5, 147-159(1988).

    [24] H. Huang, D. Arsenijević, K. Schires, T. Sadeev, D. Erasme, D. Bimberg, F. Grillot. Efficiency of four-wave mixing in injection-locked InAs/GaAs quantum-dot lasers. AIP Adv., 6, 125105(2016).

    [25] T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, H. Ishikawa. Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices. IEEE J. Quantum Electron., 37, 1059-1065(2001).

    [26] H. Ishikawa. Applications of quantum dot to optical devices. Semiconductors and Semimetals, 60, 287-324(1999).

    [27] H. Su, H. Li, L. Zhang, Z. Zou, A. Gray, R. Wang, P. Varangis, L. Lester. Nondegenerate four-wave mixing in quantum dot distributed feedback lasers. IEEE Photon. Technol. Lett., 17, 1686-1688(2005).

    [28] T. Sadeev, H. Huang, D. Arsenijević, K. Schires, F. Grillot, D. Bimberg. Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55  μm. Appl. Phys. Lett., 107, 191111(2015).

    [29] P. J. Poole, Z. Lu, J. Liu, P. Barrios, Y. Mao, G. Liu. A performance comparison between quantum dash and quantum well Fabry-Pérot lasers. IEEE J. Quantum Electron., 57, 2500207(2021).

    [30] J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. Bowers, F. Grillot. Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Appl. Phys. Lett., 112, 251111(2018).

    [31] J. Duan, Y. Zhou, B. Dong, H. Huang, J. C. Norman, D. Jung, Z. Zhang, C. Wang, J. E. Bowers, F. Grillot. Effect of p-doping on the intensity noise of epitaxial quantum dot lasers on silicon. Opt. Lett., 45, 4887-4890(2020).

    [32] D. G. Deppe, H. Huang, O. B. Shchekin. Modulation characteristics of quantum-dot lasers: The influence of p-type doping and the electronic density of states on obtaining high speed. IEEE J. Quantum Electron., 38, 1587-1593(2002).

    [33] M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester. GaAs-based quantum dot lasers. Semiconductors and Semimetals, 371-417(2012).

    [34] Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, J. E. Bowers. Effects of modulation p doping in InAs quantum dot lasers on silicon. Appl. Phys. Lett., 113, 061105(2018).

    [35] W. W. Chow, S. Liu, Z. Zhang, J. E. Bowers, M. Sargent. Multimode description of self-mode locking in a single-section quantum-dot laser. Opt. Express, 28, 5317-5330(2020).

    [36] F. Grillot, J. Duan, B. Dong, H. Huang, S. Liu, W. Chow, J. Norman, J. Bowers. Quantum dot lasers based photonics integrated circuits. IEEE Photonics Conference (IPC), 1-2(2020).

    [37] M. Sargent, M. Scully, W. Lamb. Laser Physics(1974).

    [38] D. Nielsen, S. L. Chuang. Four-wave mixing and wavelength conversion in quantum dots. Phys. Rev. B, 81, 035305(2010).

    [39] G. Moody, L. Chang, T. J. Steiner, J. E. Bowers. Chip-scale nonlinear photonics for quantum light generation. AVS Quantum Sci., 2, 041702(2020).

    [40] T. J. Steiner, J. E. Castro, L. Chang, Q. Dang, W. Xie, J. Norman, J. E. Bowers, G. Moody. Ultrabright entangled-photon-pair generation from an AlGaAs-on-insulator microring resonator. PRX Quantum, 2, 010337(2021).

    [41] F. Jérémie, C. Chabran, P. Gallion. Room-temperature generation of amplitude-squeezed light from 1550-nm distributed-feedback semiconductor lasers. J. Opt. Soc. Am. B, 16, 460-464(1999).

    [42] J.-L. Vey, P. Gallion. Semiclassical model of semiconductor laser noise and amplitude noise squeezing. II. Application to complex laser structures. IEEE J. Quantum Electron., 33, 2105-2110(1997).

    [43] Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, W. Zhang. Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor. Opt. Lett., 37, 3141-3143(2012).

    [44] Y. Zhao, Y. Okawachi, J. K. Jang, X. Ji, M. Lipson, A. L. Gaeta. Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip. Phys. Rev. Lett., 124, 193601(2020).

    Jianan Duan, Bozhang Dong, Weng W. Chow, Heming Huang, Shihao Ding, Songtao Liu, Justin C. Norman, John E. Bowers, Frédéric Grillot. Four-wave mixing in 1.3 μm epitaxial quantum dot lasers directly grown on silicon[J]. Photonics Research, 2022, 10(5): 1264
    Download Citation