• Photonics Research
  • Vol. 11, Issue 1, 27 (2023)
Minru He1、2, Yansheng Liang1、2、4、*, Xue Yun1、2, Zhaojun Wang1、2, Tianyu Zhao1、2, Shaowei Wang1、2, Piero R. Bianco3, and Ming Lei1、2、5、*
Author Affiliations
  • 1MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
  • 2Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
  • 3Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, USA
  • 4e-mail: yansheng.liang@mail.xjtu.edu.cn
  • 5e-mail: ming.lei@mail.xjtu.edu.cn
  • show less
    DOI: 10.1364/PRJ.474065 Cite this Article Set citation alerts
    Minru He, Yansheng Liang, Xue Yun, Zhaojun Wang, Tianyu Zhao, Shaowei Wang, Piero R. Bianco, Ming Lei. Generalized perfect optical vortices with free lens modulation[J]. Photonics Research, 2023, 11(1): 27 Copy Citation Text show less
    References

    [1] P. Coullet, L. Gil, F. Rocca. Optical vortices. Opt. Commun., 73, 403-408(1989).

    [2] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [3] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [4] A. Mair, A. Vaziri, G. Weihs, A. Zeilinger. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [5] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, S. Franke-Arnold. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448-5456(2004).

    [6] M. P. J. Lavery, F. C. Speirits, S. M. Barnett, M. J. Padgett. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [7] A. S. Ostrovsky, C. Rickenstorff-Parrao, V. Arrizón. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt. Lett., 38, 534-536(2013).

    [8] J. García-García, C. Rickenstorff-Parrao, R. Ramos-García, V. Arrizón, A. S. Ostrovsky. Simple technique for generating the perfect optical vortex. Opt. Lett., 39, 5305-5308(2014).

    [9] M. Chen, M. Mazilu, Y. Arita, E. M. Wright, K. Dholakia. Dynamics of microparticles trapped in a perfect vortex beam. Opt. Lett., 38, 4919-4922(2013).

    [10] M. V. Jabir, N. Apurv Chaitanya, A. Aadhi, G. K. Samanta. Generation of “perfect” vortex of variable size and its effect in angular spectrum of the down-converted photons. Sci. Rep., 6, 21877(2016).

    [11] V. V. Kotlyar, A. A. Kovalev, A. P. Porfirev. Optimal phase element for generating a perfect optical vortex. J. Opt. Soc. Am. A, 33, 2376-2384(2016).

    [12] P. Vaity, L. Rusch. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett., 40, 597-600(2015).

    [13] Y. Chen, Z.-X. Fang, Y.-X. Ren, L. Gong, R.-D. Lu. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device. Appl. Opt., 54, 8030-8035(2015).

    [14] R. Yang, X. Jiang, J. Yu, J. Han, Z. Li, D. Zhang, Q. Shi, L. Zhu. Controllable perfect optical vortex generated by complex amplitude encoding. Opt. Lett., 47, 2101-2104(2022).

    [15] W. Yuan, Y. Xu, K. Zheng, S. Fu, Y. Wang, Y. Qin. Experimental generation of perfect optical vortices through strongly scattering media. Opt. Lett., 46, 4156-4159(2021).

    [16] J. He, M. Wan, X. Zhang, S. Yuan, L. Zhang, J. Wang. Generating ultraviolet perfect vortex beams using a high-efficiency broadband dielectric metasurface. Opt. Express, 30, 4806-4816(2022).

    [17] Z. Guo, Z. Chang, J. Meng, M. An, J. Jia, Z. Zhao, X. Wang, P. Zhang. Generation of perfect optical vortex by Laguerre–Gauss beams with a high-order radial index. Appl. Opt., 61, 5269-5273(2022).

    [18] J. Wang. Advances in communications using optical vortices. Photon. Res., 4, B14-B28(2016).

    [19] Z. Wan, Y. Shen, Z. Wang, Z. Shi, Q. Liu, X. Fu. Divergence-degenerate spatial multiplexing towards future ultrahigh capacity, low error-rate optical communications. Light Sci. Appl., 11, 144(2022).

    [20] F. Nan, Z. Yan. Synergy of intensity, phase, and polarization enables versatile optical nanomanipulation. Nano Lett., 20, 2778-2783(2020).

    [21] F. Nan, Z. Yan. Optical sorting at the single-particle level with single-nanometer precision using coordinated intensity and phase gradient forces. ACS Nano, 14, 7602-7609(2020).

    [22] Y. Liang, M. Lei, S. Yan, M. Li, Y. Cai, Z. Wang, X. Yu, B. Yao. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex. Appl. Opt., 57, 79-84(2018).

    [23] Q. Yang, Z. Xie, M. Zhang, X. Ouyang, Y. Xu, Y. Cao, S. Wang, L. Zhu, X. Li. Ultra-secure optical encryption based on tightly focused perfect optical vortex beams. Nanophotonics, 11, 1063-1070(2022).

    [24] Y. Chen, T. Wang, Y. Ren, Z. Fang, G. Ding, L. He, R. Lu, K. Huang. Generalized perfect optical vortices along arbitrary trajectories. J. Phys. Appl. Phys., 54, 214001(2021).

    [25] Y. Liang, S. Yan, M. He, M. Li, Y. Cai, Z. Wang, M. Lei, B. Yao. Generation of a double-ring perfect optical vortex by the Fourier transform of azimuthally polarized Bessel beams. Opt. Lett., 44, 1504-1507(2019).

    [26] M. Woerdemann, C. Alpmann, M. Esseling, C. Denz. Advanced optical trapping by complex beam shaping: advanced optical trapping. Laser Photon. Rev., 7, 839-854(2013).

    [27] J. E. Curtis, D. G. Grier. Structure of optical vortices. Phys. Rev. Lett., 90, 133901(2003).

    [28] N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, R. L. Clark. A versatile diffractive maskless lithography for single-shot and serial microfabrication. Opt. Express, 18, 11754-11762(2010).

    [29] K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett., 12, 3645-3649(2022).

    [30] Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, M. Lei. Simultaneous optical trapping and imaging in the axial plane: a review of current progress. Rep. Prog. Phys., 83, 032401(2020).

    [31] Y. Shen, Z. Wan, Y. Meng, X. Fu, M. Gong. Polygonal vortex beams. IEEE Photon. J., 10, 1503016(2018).

    [32] C. Wang, Y. Ren, T. Liu, Z. Liu, S. Qiu, Z. Li, Y. Ding, H. Wu. Generating a new type of polygonal perfect optical vortex. Opt. Express, 29, 14126-14143(2021).

    [33] L. Li, C. Chang, C. Yuan, S. Feng, S. Nie, Z.-C. Ren, H.-T. Wang, J. Ding. High efficiency generation of tunable ellipse perfect vector beams. Photon. Res., 6, 1116-1123(2018).

    [34] J. A. Rodrigo, T. Alieva, E. Abramochkin, I. Castro. Shaping of light beams along curves in three dimensions. Opt. Express, 21, 20544-20555(2013).

    [35] M. Li, S. Yan, B. Yao, Y. Liang, M. Lei, Y. Yang. Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization. Phys. Lett. A, 380, 311-315(2016).

    [36] M. R. He, Y. S. Liang, P. R. Bianco, Z. J. Wang, X. Yun, Y. N. Cai, K. Feng, M. Lei. Trapping performance of holographic optical tweezers generated with different hologram algorithms. AIP Adv., 11, 035130(2021).

    [37] Y. Liang, Y. Cai, Z. Wang, M. Lei, Z. Cao, Y. Wang, M. Li, S. Yan, P. R. Bianco, B. Yao. Aberration correction in holographic optical tweezers using a high-order optical vortex. Appl. Opt., 57, 3618-3623(2018).

    [38] Y. Liang, X. Yun, M. He, Z. Wang, S. Wang, M. Lei. Zero-order-free complex beam shaping. Opt. Lasers Eng., 155, 107048(2022).

    [39] X. Yun, Y. Liang, M. He, L. Guo, Z. Wang, T. Zhao, S. Wang, M. Lei. Determining the phase gradient parameter of three-dimensional polymorphic beams. Front. Phys., 10, 893133(2022).

    [40] G. Xue, Q. Zhai, H. Lu, Q. Zhou, K. Ni, L. Lin, X. Wang, X. Li. Polarized holographic lithography system for high-uniformity microscale patterning with periodic tunability. Microsyst. Nanoeng., 7, 31(2021).

    [41] E.-C. Chang, D. Mikolas, P.-T. Lin, T. Schenk, C.-L. Wu, C.-K. Sung, C.-C. Fu. Improving feature size uniformity from interference lithography systems with non-uniform intensity profiles. Nanotechnology, 24, 455301(2013).

    [42] Y. Qi, M. Lei, Y. Yang, B. Yao, D. Dan, X. Yu, S. Yan, T. Ye. Remote-focusing microscopy with long working distance objective lenses. Appl. Opt., 53, 3473-3478(2014).

    [43] V. Arrizón, U. Ruiz, R. Carrada, L. A. González. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A, 24, 3500(2007).

    [44] J. Gieseler, J. R. Gomez-Solano, A. Magazzù, I. Pérez Castillo, L. Pérez García, M. Gironella-Torrent, X. Viader-Godoy, F. Ritort, G. Pesce, A. V. Arzola, K. Volke-Sepúlveda, G. Volpe. Optical tweezers—from calibration to applications: a tutorial. Adv. Opt. Photon., 13, 74-241(2021).

    [45] G. Volpe, O. M. Maragò, H. Rubinzstein-Dunlop. Roadmap for optical tweezers. arXiv:2206.13789(2022).

    [46] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [47] Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, D. G. Grier. Optical forces arising from phase gradients. Phys. Rev. Lett., 100, 013602(2008).

    [48] J. A. Rodrigo, T. Alieva. Polymorphic beams and nature inspired circuits for optical current. Sci. Rep., 6, 35341(2016).

    [49] X. Chen, C. Zhou, W. Wang. Colloidal motors 101: a beginner’s guide to colloidal motor research. Chem. Asian J., 14, 2388-2405(2019).

    Minru He, Yansheng Liang, Xue Yun, Zhaojun Wang, Tianyu Zhao, Shaowei Wang, Piero R. Bianco, Ming Lei. Generalized perfect optical vortices with free lens modulation[J]. Photonics Research, 2023, 11(1): 27
    Download Citation