• Advanced Photonics
  • Vol. 4, Issue 1, 016002 (2022)
Quan Xu1, Xiaoqiang Su2、*, Xueqian Zhang1, Lijuan Dong2, Lifeng Liu2, Yunlong Shi2, Qiu Wang3, Ming Kang4, Andrea Alù5、6, Shuang Zhang7、8、*, Jiaguang Han1、9、*, and Weili Zhang10、*
Author Affiliations
  • 1Tianjin University, Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin, China
  • 2Shanxi Datong University, Institute of Solid State Physics and College of Physics and Electronic Science, Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials, Datong, China
  • 3Wuhan University of Technology, School of Information Engineering, Wuhan, China
  • 4Tianjin Normal University, College of Physics and Materials Science, Tianjin, China
  • 5City University of New York, Advanced Science Research Center, Photonics Initiative, New York, United States
  • 6City University of New York, Graduate Center, Physics Program, New York, United States
  • 7University of Hong Kong, Faculty of Science, Department of Physics, Hong Kong, China
  • 8University of Hong Kong, Department of Electrical and Electronic Engineering, Hong Kong, China
  • 9Guilin University of Electronic Technology, Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin, China
  • 10Oklahoma State University, School of Electrical and Computer Engineering, Stillwater, Oklahoma, United States
  • show less
    DOI: 10.1117/1.AP.4.1.016002 Cite this Article Set citation alerts
    Quan Xu, Xiaoqiang Su, Xueqian Zhang, Lijuan Dong, Lifeng Liu, Yunlong Shi, Qiu Wang, Ming Kang, Andrea Alù, Shuang Zhang, Jiaguang Han, Weili Zhang. Mechanically reprogrammable Pancharatnam–Berry metasurface for microwaves[J]. Advanced Photonics, 2022, 4(1): 016002 Copy Citation Text show less
    References

    [1] W. T. Chen, A. D. Y. Zhu, F. Capasso. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater., 5, 604-620(2020).

    [2] P. Genevet et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139-152(2017).

    [3] X. Q. Zhang et al. Terahertz surface plasmonic waves: a review. Adv. Photonics, 2, 014001(2020).

    [4] F. Monticone, A. Alù. Metamaterial, plasmonic and nanophotonic devices. Rep. Prog. Phys., 80, 036401(2017).

    [5] X. G. Luo et al. Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics, 10, 757-842(2018).

    [6] B. Sain, C. Meier, T. Zentgraf. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Adv. Photonics, 1, 024002(2019).

    [7] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [8] X. Zhang et al. Direct polarization measurement using a multiplexed Pancharatnam–Berry metahologram. Optica, 6, 1190-1198(2019).

    [9] S. Wang et al. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [10] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [11] R. C. Devlin et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    [12] Y. Yuan et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nat. Commun., 11, 4186(2020).

    [13] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [14] S. Sun et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426-431(2012).

    [15] C. Pfeiffer, A. Grbic. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett., 110, 197401(2013).

    [16] L. Liu et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater., 26, 5031-5036(2014).

    [17] Q. Xu et al. Polarization-controlled surface plasmon holography. Laser Photonics Rev., 11, 1600212(2017).

    [18] Q. Fan et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Phys. Rev. Lett., 125, 267402(2020).

    [19] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [20] J. P. Balthasar Mueller et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [21] F. Ding et al. Versatile polarization generation and manipulation using dielectric metasurfaces. Laser Photonics Rev., 14, 2000116(2020).

    [22] B. Yang et al. High-performance meta-devices based on multilayer meta-atoms: interplay between the number of layers and phase coverage. Sci. Bull., 64, 823-835(2019).

    [23] Q. He et al. High-efficiency metasurfaces: principles, realizations, and applications. Adv. Opt. Mater., 6, 1800415(2018).

    [24] Y. B. Zhang et al. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electron. Adv., 3, 200002(2020).

    [25] A. Nemati et al. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv., 1, 18000901(2018).

    [26] Q. He, S. Sun, L. Zhou. Tunable/reconfigurable metasurfaces: physics and applications. Research, 2019, 1849272(2019).

    [27] N. I. Zheludev, E. Plum. Reconfigurable nanomechanical photonic metamaterials. Nat. Nanotechnol., 11, 16-22(2016).

    [28] J. Gu et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 3, 1151(2012).

    [29] H. T. Chen et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photonics, 2, 295-298(2008).

    [30] B. Gholipour et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater., 25, 3050-3054(2013).

    [31] L. Mao et al. Reversible switching of electromagnetically induced transparency in phase change metasurfaces. Adv. Photonics, 2, 056004(2020).

    [32] X. Liu et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface. Adv. Opt. Mater., 7, 1900175(2019).

    [33] H. Tao et al. Reconfigurable terahertz metamaterials. Phys. Rev. Lett., 103, 147401(2009).

    [34] M. Liu et al. Temperature-controlled optical activity and negative refractive index. Adv. Funct. Mater., 31, 2010249(2021).

    [35] L. Ju et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol., 6, 630-634(2011).

    [36] J. Y. Ou et al. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat. Nanotechnol., 8, 252-255(2013).

    [37] Y. Kim et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett., 19, 3961-3968(2019).

    [38] Z. Q. Miao et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys. Rev. X, 5, 041027(2015).

    [39] L. Li et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun., 8, 197(2017).

    [40] L. Li et al. Machine-learning reprogrammable metasurface imager. Nat. Commun., 10, 1082(2019).

    [41] K. Chen et al. A reconfigurable active Huygens’ metalens. Adv. Mater., 29, 1606422(2017).

    [42] L. Zhang et al. Space-time-coding digital metasurfaces. Nat. Commun., 9, 4334(2018).

    [43] X. Wan et al. Multichannel direct transmissions of near-field information. Light Sci. Appl., 8, 60(2019).

    [44] H. Wu et al. Harmonic information transitions of spatiotemporal metasurfaces. Light Sci. Appl., 9, 198(2020).

    [45] L. Li et al. Intelligent metasurface imager and recognizer. Light Sci. Appl., 8, 97(2019).

    [46] C. Qian et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics, 14, 383-390(2020).

    [47] P. del Hougne, M. Fink, G. Lerosey. Optimally diverse communication channels in disordered environments with tuned randomness. Nat. Electron., 2, 36-41(2019).

    [48] X. G. Zhang et al. An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron., 3, 165-171(2020).

    [49] C. Liaskos et al. A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag., 56, 162-169(2018).

    [50] J. W. You et al. Reprogrammable plasmonic topological insulators with ultrafast control. Nat. Commun., 12, 5468(2021).

    [51] H. H. Yang et al. A 1-bit 10 × 10 reconfigurable reflectarray antenna: design, optimization, and experiment. IEEE Trans. Antennas Propag., 64, 2246-2254(2016).

    [52] T. J. Cui et al. Direct transmission of digital message via programmable coding metasurface. Research, 2019, 2584509(2019).

    [53] C. Huang et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Adv. Opt. Mater., 5, 1700485(2017).

    [54] L. Zhang et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron., 4, 218-227(2021).

    [55] T. J. Cui, S. Liu, L. L. Li. Information entropy of coding metasurface. Light Sci. Appl., 5, e16172(2016).

    [56] P. Thureja et al. Array-level inverse design of beam steering active metasurfaces. ACS Nano, 14, 15042-15055(2020).

    [57] C. H. Lin et al. Automatic inverse design of high-performance beam-steering metasurfaces via genetic-type tree optimization. Nano Lett., 21, 4981-4989(2021).

    [58] S. Venkatesh et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips. Nat. Electron., 3, 785-793(2020).

    [59] W. Zhu et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Adv. Mater., 27, 4739-4743(2015).

    [60] Z. Wang et al. Origami-based reconfigurable metamaterials for tunable chirality. Adv. Mater., 29, 1700412(2017).

    [61] S. Liu et al. Flexible controls of broadband electromagnetic wavefronts with a mechanically programmable metamaterial. Sci. Rep., 9, 1809(2019).

    [62] C. P. Jisha, S. Nolte, A. Alberucci. Geometric phase in optics: from wavefront manipulation to waveguiding. Laser Photonics Rev., 15, 2100003(2021).

    [63] X. Xie et al. Generalized Pancharatnam–Berry phase in rotationally symmetric meta-atoms. Phys. Rev. Lett., 126, 183902(2021).

    [64] Q. Wang et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci. Appl., 7, 25(2018).

    [65] Q. Wang et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci. Rep., 6, 32867(2016).

    [66] W. T. Chen et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun., 10, 355(2019).

    [67] W. Ye et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun., 7, 11930(2016).

    [68] H. Wang, M. Pumera. Fabrication of micro/nanoscale motors. Chem. Rev., 115, 8704-8735(2015).

    [69] S. Mohith et al. Recent trends in piezoelectric actuators for precision motion and their applications: a review. Smart Mater. Struct., 30, 013002(2021).

    [70] L. Xin et al. A rotary plasmonic nanoclock. Nat. Commun., 10, 5394(2019).

    [71] A. Kuzyk et al. Reconfigurable 3D plasmonic metamolecules. Nat. Mater., 13, 862-866(2014).

    Quan Xu, Xiaoqiang Su, Xueqian Zhang, Lijuan Dong, Lifeng Liu, Yunlong Shi, Qiu Wang, Ming Kang, Andrea Alù, Shuang Zhang, Jiaguang Han, Weili Zhang. Mechanically reprogrammable Pancharatnam–Berry metasurface for microwaves[J]. Advanced Photonics, 2022, 4(1): 016002
    Download Citation