• High Power Laser and Particle Beams
  • Vol. 34, Issue 6, 064010 (2022)
Jiahao Xiao1、2, Yingchao Du1、2、*, Haoqing Li1、3, Yongtao Zhao4, and Liang Sheng3
Author Affiliations
  • 1Department of Engineering Physics, Tsinghua University, Beijing 100084, China
  • 2Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, China
  • 3State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an 710024, China
  • 4School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
  • show less
    DOI: 10.11884/HPLPB202234.210548 Cite this Article
    Jiahao Xiao, Yingchao Du, Haoqing Li, Yongtao Zhao, Liang Sheng. Dual degrees of freedom diagnosis with high energy electron lens radiography[J]. High Power Laser and Particle Beams, 2022, 34(6): 064010 Copy Citation Text show less
    References

    [1] Walsh C A, Chittenden J P, McGlinchey K, et al. Self-generated magnetic fields in the stagnation phase of indirect-drive implosions on the National Ignition Facility[J]. Physical Review Letters, 118, 155001(2017).

    [2] Fox W, Bhattacharjee A, Germaschewski K. Magnetic reconnection in high-energy-density laser-produced plasmas[J]. Physics of Plasmas, 19, 056309(2012).

    [3] Gotchev O V, Chang P Y, Knauer J P, et al. Laser-driven magnetic-flux compression in high-energy-density plasmas[J]. Physical Review Letters, 103, 215004(2009).

    [4] Lindemuth L R, Ekdahl C A, Fowler C M, et al. US/Russian collaboration in high-energy-density physics using high-explosive pulsed power: ultrahigh current experiments, ultrahigh magnetic field applications, and progress toward controlled thermonuclear fusion[J]. IEEE Transactions on Plasma Science, 25, 1357-1372(1997).

    [5] Merrill F E, Campos E, Espinoza C, et al. Magnifying lens for 800 MeV proton radiography[J]. Review of Scientific Instruments, 82, 103709(2011).

    [6] Kantsyrev A V, Golubev A A, Bogdanov A V, et al. TWAC-ITEP proton microscopy facility[J]. Instruments and Experimental Techniques, 57, 1-10(2014).

    [7] Rygg J R, Séguin F H, Li C K, et al. Proton radiography of inertial fusion implosions[J]. Science, 319, 1223-1225(2008).

    [8] Tommasini R, Landen O L, Hopkins L B, et al. Time-resolved fuel density profiles of the stagnation phase of indirect-drive inertial confinement implosions[J]. Physical Review Letters, 125, 155003(2020).

    [9] Martynenko A S, Pikuz S A, Skobelev I Y, et al. Optimization of a laser plasma-based X-ray source according to WDM absorption spectroscopy requirements[J]. Matter and Radiation at Extremes, 6, 014405(2021).

    [10] Zhao Yongtao, Zhang Zimin, Gai Wei, et al. High energy electron radiography scheme with high spatial and temporal resolution in three dimension based on a e-LINAC[J]. Laser and Particle Beams, 34, 338-342(2016).

    [11] Xiao Jiahao, Zhang Zimin, Cao Shuchun, et al. Areal density and spatial resolution of high energy electron radiography[J]. Chinese Physics B, 27, 035202(2018).

    [12] Wang Feng, Jiang Shaoen, Ding Yongkun, et al. Recent diagnostic developments at the 100 kJ-level laser facility in China[J]. Matter and Radiation at Extremes, 5, 035201(2020).

    [13] Li C K, Séguin F H, Frenje J A, et al. Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography[J]. Physical Review Letters, 97, 135003(2006).

    [14] Li C K, Séguin F H, Frenje J A, et al. Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion[J]. Physical Review Letters, 100, 225001(2008).

    [15] Liao Guoqian, Li Yutong, Zhu Baojun, et al. Proton radiography of magnetic fields generated with an open-ended coil driven by high power laser pulses[J]. Matter and Radiation at Extremes, 1, 187-191(2016).

    [16] Schumaker W, Nakanii N, McGuffey C, et al. Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions[J]. Physical Review Letters, 110, 015003(2013).

    [17] Zhu P F, Zhang Z C, Chen L, et al. Ultrashort electron pulses as a four-dimensional diagnosis of plasma dynamics[J]. Review of Scientific Instruments, 81, 103505(2010).

    [18] Li Junjie, Wang Xuan, Chen Zhaoyang, et al. Ultrafast electron beam imaging of femtosecond laser-induced plasma dynamics[J]. Journal of Applied Physics, 107, 083305(2010).

    [19] Chen Long, Li Runze, Chen Jie, et al. Mapping transient electric fields with picosecond electron bunches[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 14479-14483(2015).

    [20] Merrill F, Harmon F, Hunt A, et al. Electron radiography[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 261, 382-386(2007).

    [21] Merrill F E, Goett J, Gibbs J W, et al. Demonstration of transmission high energy electron microscopy[J]. Applied Physics Letters, 112, 144103(2018).

    [22] Zhou Zheng, Fang Yu, Chen Han, et al. Visualizing the melting processes in ultrashort intense laser triggered gold mesh with high energy electron radiography[J]. Matter and Radiation at Extremes, 4, 065402(2019).

    [23] Xiao Jiahao, Du Yingchao, Zhang Shizheng, et al. Ultrafast high-energy electron radiography application in magnetic field delicate structure measurement[J]. Laser and Particle Beams, 6683245(2021).

    [24] Xiao Jiahao, Du Yingchao, Li Haoqing, et al. Ultrafast high energy electron lens radiography suitable f transient electromagic field diagnosis [J]. Journal of Instrumentation, 2022, 17(01):P01033 DOI:10.1088174802211701P01033

    [25] Hirayama H, Namito Y, Bielajew A F, et al. The EGS5 code system[R]. SLACR730, 2005.

    Jiahao Xiao, Yingchao Du, Haoqing Li, Yongtao Zhao, Liang Sheng. Dual degrees of freedom diagnosis with high energy electron lens radiography[J]. High Power Laser and Particle Beams, 2022, 34(6): 064010
    Download Citation