• High Power Laser and Particle Beams
  • Vol. 34, Issue 6, 064010 (2022)
Jiahao Xiao1、2, Yingchao Du1、2、*, Haoqing Li1、3, Yongtao Zhao4, and Liang Sheng3
Author Affiliations
  • 1Department of Engineering Physics, Tsinghua University, Beijing 100084, China
  • 2Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, China
  • 3State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an 710024, China
  • 4School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
  • show less
    DOI: 10.11884/HPLPB202234.210548 Cite this Article
    Jiahao Xiao, Yingchao Du, Haoqing Li, Yongtao Zhao, Liang Sheng. Dual degrees of freedom diagnosis with high energy electron lens radiography[J]. High Power Laser and Particle Beams, 2022, 34(6): 064010 Copy Citation Text show less

    Abstract

    The evolution of electromagnetic field and fluid is important in the research of high energy density physics, controlled nuclear fusion, and laboratory astrophysics. But in experiment, it is difficult to get the density and electromagnetic field distribution simultaneously. Based on high energy electron lens radiography, this paper proposes dual degrees of freedom diagnosis (DDFD) by constructing areal density difference. Combining the Monte-Carlo simulation and beam optics analysis, the feasibility of this method when the diagnosed system includes relatively strong electromagnetic field has been validated. Besides, changing the aperture as a ring can effectively improve the resolution in low E/B field and low areal density situation. The simulation results indicate that this method works well. Considering the characters of electron beams, this method is quite suitable for the electromagnetic fluid diagnosis.
    $ f\left(\varphi ,{t}\right)=\dfrac{N(t,\varphi )}{{N}_{0}}=\dfrac{1}{{\phi }_{0}\left(t\right)\sqrt{2\mathrm{\pi }}}{\mathrm{e}}^{-\tfrac{1}{2}{\left(\tfrac{\varphi }{{\varphi }_{0}\left(t\right)}\right)}^{2}} $(1)

    View in Article

    $ {\varphi }_{0}\left(t\right)=\dfrac{13.6\mathrm{M}\mathrm{e}\mathrm{V}}{\beta cp}\sqrt{t}(1+0.038\mathrm{l}\mathrm{n}(t\left)\right) $()

    View in Article

    $ \boldsymbol{\theta }=\displaystyle\int \dfrac{e{\boldsymbol{B}}_{\perp }(x,y,{\textit{z}})}{p}\mathrm{d}{{\boldsymbol{z}}}+\displaystyle\int \dfrac{{\boldsymbol{E}}_{\perp }(x,y,{\textit{z}})e}{cp}\mathrm{d}{{\boldsymbol{z}}} $(2)

    View in Article

    $ \left[\begin{array}{c}{x}_{i}\\ {x}_{i}'\\ {y}_{i}\\ {y}_{i}'\end{array}\right]=\left[\begin{array}{cccc}{R}_{11}& {R}_{12}& 0& 0\\ {R}_{21}& {R}_{22}& 0& 0\\ 0& 0& {R}_{33}& {R}_{34}\\ 0& 0& {R}_{43}& {R}_{44}\end{array}\right]\left[\begin{array}{c}{x}_{0}\\ {x}_{0}'\\ {y}_{0}\\ {y}_{0}'\end{array}\right] $(3)

    View in Article

    $ \left[\begin{array}{c}{x}_{\mathrm{F}}\\ {y}_{\mathrm{F}}\end{array}\right]=\left[\begin{array}{cc}{R}_{12\mathrm{F}}& 0\\ 0& {R}_{34\mathrm{F}}\end{array}\right]\left[\begin{array}{c}{x}_{0}'\\ {y}_{0}'\end{array}\right] $(4)

    View in Article

    $ j({x}_{0}',{y}_{0}',t)=f({\rho }',{\varphi }',t)=f\Bigg(\sqrt{{x}_{0}'^{2}+{y}_{0}'^{2}},{\varphi }',t\Bigg) $(5)

    View in Article

    $ {T}_{{\rm{r}}}(t,\boldsymbol{\theta })=\iint\nolimits_{({\rho }',{\varphi }')\in {S}'} f({\rho }',{\varphi }',t){\rho }'\mathrm{d}{\rho }'\mathrm{d}{\varphi }' $(6)

    View in Article

    $ \left\{ \begin{array}{l} {T}_{{\rm{r}}}(t,\boldsymbol{\theta })={\displaystyle\int }_{0}^{\varepsilon }{\displaystyle\int }_{0}^{2\mathrm{\pi }}{f}_{t}\left({\rho }_{t}'\right){\rho }'\mathrm{d}{\rho }'\mathrm{d}{\varphi }'\\ \dfrac{{l}_{x}}{{R}_{12\mathrm{F}}}=\dfrac{{l}_{y}}{{R}_{34\mathrm{F}}}=\varepsilon \end{array} \right.$(7)

    View in Article

    $ {\rho }_{{\rm{t}}}'=\sqrt{{({\rho }'\mathrm{c}\mathrm{o}\mathrm{s}{\varphi }'-{\rho }_{\boldsymbol{\theta }}')}^{2}+{\left({\rho }'\mathrm{s}\mathrm{i}\mathrm{n}{\varphi }'\right)}^{2}} $(8)

    View in Article

    $ {T}_{{\rm{r}}}(t,{\boldsymbol{\theta}} )={\displaystyle\int }_{{\varepsilon }_{1}}^{{\varepsilon }_{2}}{\displaystyle\int }_{0}^{2\mathrm{\pi }}{{{f}}}_{{\rm{t}}}\left({\rho }_{{\rm{t}}}'\right){\rho }'\mathrm{d}{\rho }'\mathrm{d}{\varphi }' $(9)

    View in Article

    $ \left\{\begin{array}{c}{T}_{{\rm{r}}1}={T}_{{\rm{r}}}(t+{t}_{1},\theta )\\ \begin{array}{c}{T}_{{\rm{r}}2}={T}_{{\rm{r}}}(t+{t}_{1},\theta )\\ {T}_{{\rm{r}}3}={T}_{{\rm{r}}}(t+{t}_{1},\theta )\\ {T}_{{\rm{r}}4}={T}_{{\rm{r}}}(t+{t}_{1},\theta )\end{array}\end{array}\right. $(10)

    View in Article

    Jiahao Xiao, Yingchao Du, Haoqing Li, Yongtao Zhao, Liang Sheng. Dual degrees of freedom diagnosis with high energy electron lens radiography[J]. High Power Laser and Particle Beams, 2022, 34(6): 064010
    Download Citation