• Laser & Optoelectronics Progress
  • Vol. 58, Issue 4, 0400001 (2021)
Jianwei Chen1、2、3, Hui Gong1、2、3, and Jing Yuan1、2、3、*
Author Affiliations
  • 1Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • 2MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • 3HUST-Suzhou Institute for Brainsmatics, Suzhou, Jiangsu 215125, China
  • show less
    DOI: 10.3788/LOP202158.0400001 Cite this Article Set citation alerts
    Jianwei Chen, Hui Gong, Jing Yuan. Multispectral Imaging Technology and Its Applications in Biomedicine[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0400001 Copy Citation Text show less
    References

    [1] Anselmo V J. -10-16[P]. Reilly T H. Medical diagnosis system, method with multispectral imaging: US4170987.(1979).

    [2] Cao L L, Wu C F, Hou Q Y et al. Survey of target recognition technology based on spectrum imaging[J]. Optical Technique, 36, 145-150(2010).

    [3] Wang Y W, Reder N P, Kang S et al. Multiplexed optical imaging of tumor-directed nanoparticles: a review of imaging systems and approaches[J]. Nanotheranostics, 1, 369-388(2017). http://europepmc.org/articles/PMC5647764/

    [4] Zeng W J, Li Z H, Wen Y X et al. Advance of multispectral imaging application in the biomedicine[J]. Progress in Modern Biomedicine, 12, 968-971(2012).

    [5] Liu L X, Li M Z, Zhao Z G et al. Recent advances of hyperspectral imaging application in biomedicine[J]. Chinese Journal of Lasers, 45, 0207017(2018).

    [6] Gong X J, Wang G, Ou Z H et al. The application of hyperspectral imaging technique in biomedicine[J]. Acta Laser Biology Sinica, 25, 289-294(2016).

    [7] Levenson R M, Mansfield J R. Multispectral imaging in biology and medicine: slices of life[J]. Cytometry Part A, 69, 748-758(2006). http://dx.doi.org/10.1002/cyto.a.20319

    [8] Li Q L, He X F, Wang Y T et al. Review of spectral imaging technology in biomedical engineering: achievements and challenges[J]. Journal of Biomedical Optics, 18, 100901(2013). http://www.ncbi.nlm.nih.gov/pubmed/24114019

    [9] Keshavarzi S, Kovacs A, Abdo M et al. Porous silicon based rugate filter wheel for multispectral imaging applications[J]. ECS Journal of Solid State Science and Technology, 8, Q43-Q49(2019). http://www.researchgate.net/publication/331928048_Porous_Silicon_Based_Rugate_Filter_Wheel_for_Multispectral_Imaging_Applications

    [10] Renhorn I G E, Bergström D, Hedborg J et al. High spatial resolution hyperspectral camera based on a linear variable filter[J]. Optical Engineering, 55, 114105(2016). http://proceedings.spiedigitallibrary.org/journals/Optical-Engineering/volume-55/issue-11/114105/High-spatial-resolution-hyperspectral-camera-based-on-a-linear-variable/10.1117/1.OE.55.11.114105.full

    [11] Latorre-Carmona P, Sánchez-Ortiga E, Xiao X et al. Multispectral integral imaging acquisition and processing using a monochrome camera and a liquid crystal tunable filter[J]. Optics Express, 20, 25960-25969(2012). http://www.opticsinfobase.org/abstract.cfm?uri=oe-20-23-25960

    [12] Polschikova O, Machikhin A, Batshev V et al. AOTF-based optical system of a microscope module for multispectral imaging techniques[J]. Proceedings of SPIE, 1059, 105920H(2017). http://adsabs.harvard.edu/abs/2017SPIE10592E..0HP

    [13] Mao H F. Silva K K M B D, Martyniuk M, et al. MEMS-based tunable Fabry-Perot filters for adaptive multispectral thermal imaging[J]. Journal of Microelectromechanical Systems, 25, 227-235(2016).

    [14] Chen Z Y, Wang X, Liang R G. RGB-NIR multispectral camera[J]. Optics Express, 22, 4985-4994(2014).

    [15] Shogenji R, Kitamura Y, Yamada K et al. Multispectral imaging using compact compound optics[J]. Optics Express, 12, 1643-1655(2004). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-8-1643

    [16] Nakanishi T, Kagawa K, Masaki Y et al. Development of a mobile TOMBO system for multi-spectral imaging[J]. Proceedings of SPIE, 1133, 1133102(2020).

    [17] Chen J W, Lee H H, Wang D P et al. Hybrid imprinting process to fabricate a multi-layer compound eye for multispectral imaging[J]. Optics Express, 25, 4180-4189(2017). http://dx.doi.org/10.1364/oe.25.004180

    [18] Yu X D, Yu X D, Yu X D et al. Multispectral curved compound eye camera[J]. Optics Express, 28, 9216-9231(2020). http://www.researchgate.net/publication/339036657_Multispectral_curved_compound_eye_camera/download

    [19] Chen J. Parallel micro-and nano-manufacturing on nonplanar substrates[D]. Hong Kong: The Chinese University of Hong Kong(2016).

    [20] Ding H, Chen C, Zhao H C et al. Smartphone based multispectral imager and its potential for point-of-care testing[J]. The Analyst, 144, 4380-4385(2019). http://pubs.rsc.org/en/content/articlelanding/2019/an/c9an00853e

    [21] Chen C, Ding H, Zhao H C et al. Smartphone based spectrometry platform for mobile health: from spectrometer to multispectral imager[J]. Proceedings of SPIE, 11209, 1120924(2019).

    [22] Kim S, Kim J, Hwang M et al. Smartphone-based multispectral imaging and machine-learning based analysis for discrimination between seborrheic dermatitis and psoriasis on the scalp[J]. Biomedical Optics Express, 10, 879-891(2019). http://www.osapublishing.org/boe/abstract.cfm?uri=boe-10-2-879

    [23] Kim M, Kim S, Hwang M et al. Multispectral imaging based on a smartphone with an external C-MOS camera for detection of seborrheic dermatitis on the scalp[J]. Proceedings of SPIE, 10068, 100681S(2017). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2251707

    [24] Kim S, Cho D, Kim J et al. Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis[J]. Biomedical Optics Express, 7, 5294-5307(2016). http://www.ncbi.nlm.nih.gov/pubmed/28018743

    [25] Kuzmina I, Lacis M, Spigulis J et al. Study of smartphone suitability for mapping of skin chromophores[J]. Journal of Biomedical Optics, 20, 090503(2015). http://www.ncbi.nlm.nih.gov/pubmed/26405818

    [26] He Q H, Wang R K, Wang R K. Hyperspectral imaging enabled by an unmodified smartphone for analyzing skin morphological features and monitoring hemodynamics[J]. Biomedical Optics Express, 11, 895-910(2020). http://www.researchgate.net/publication/338509305_Hyperspectral_imaging_enabled_by_unmodifiedsmartphone_for_analyzing_skin_morphologicalfeatures_and_monitoring_hemodynamics

    [27] Zhou L. El-Deiry W S. Multispectral fluorescence imaging[J]. Journal of Nuclear Medicine, 50, 1563-1566(2009).

    [28] van Dam G M, Themelis G, Crane L M A et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results[J]. Nature Medicine, 17, 1315-1319(2011). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=66445342&site=ehost-live

    [29] Lv Y, Zhang J L, Zhang D et al. In vivo simultaneous multispectral fluorescence imaging with spectral multiplexed volume holographic imaging system[J]. Journal of Biomedical Optics, 21, 060502(2016).

    [30] Tate T H, Keenan M, Black J F et al. Ultraminiature optical design for multispectral fluorescence imaging endoscopes[J]. Journal of Biomedical Optics, 22, 036013(2017). http://dx.doi.org/10.1117/1.jbo.22.3.036013

    [31] Meng Z Y, Qiao M, Ma J W et al. Snapshot multispectral endomicroscopy[J]. Optics Letters, 45, 3897-3900(2020).

    [32] Ai X Z, Wang Z M, Cheong H et al. Multispectral optoacoustic imaging of dynamic redox correlation and pathophysiological progression utilizing upconversion nanoprobes[J]. Nature Communications, 10, 1087(2019). http://www.ncbi.nlm.nih.gov/pubmed/30842426

    [33] Basak K. Deán-BenX L, Gottschalk S, et al. Non-invasive determination of murine placental and foetal functional parameters with multispectral optoacoustic tomography[J]. Light: Science & Applications, 8, 71(2019).

    [34] Regensburger A P, Fonteyne L M, Jüngert J et al. Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy[J]. Nature Medicine, 25, 1905-1915(2019). http://www.nature.com/articles/s41591-019-0669-y

    [35] Karlas A, Reber J, Liapis E et al. Multispectral optoacoustic tomography of brown adipose tissue[M]. ∥ Pfeifer A, Klingenspor M, Herzig S. Brown Adipose Tissue. New York: Springer, 325-336(2018).

    [36] Diot G, Metz S, Noske A et al. Multispectral optoacoustic tomography (MSOT) of human breast cancer[J]. Clinical Cancer Research, 23, 6912-6922(2017). http://www.ncbi.nlm.nih.gov/pubmed/28899968

    [37] Avayu O, Almeida E, Prior Y et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 8, 14992(2017). http://europepmc.org/abstract/MED/28378810

    [38] Khorasaninejad M, Chen W T, Zhu A Y et al. Multispectral chiral imaging with a metalens[J]. Nano Letters, 16, 4595-4600(2016). http://dx.doi.org/10.1021/acs.nanolett.6b01897

    [39] Tang X, Ackerman M M, Chen M L et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nature Photonics, 13, 277-282(2019). http://www.nature.com/articles/s41566-019-0362-1

    [40] Meng H Y, Wang L L, Liu G D et al. Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region[J]. Applied Optics, 56, 6022-6027(2017). http://www.ncbi.nlm.nih.gov/pubmed/29047925

    [41] Duempelmann L, Gallinet B, Novotny L. Multispectral imaging with tunable plasmonic filters[J]. ACS Photonics, 4, 236-241(2017). http://pubs.acs.org/doi/10.1021/acsphotonics.6b01003

    [42] Li S Q, Solanki A, Frigerio J et al. Vertical Ge-Si nanowires with suspended graphene top contacts as dynamically tunable multispectral photodetectors[J]. ACS Photonics, 6, 735-742(2019). http://www.researchgate.net/publication/330896253_Vertical_Ge-Si_Nanowires_with_Suspended_Graphene_Top_Contacts_as_Dynamically_Tunable_Multispectral_Photodetectors

    [43] Feng C, Zhao N J, Yin G F et al. Recognition of waterborne pathogens based on spectral similarity analysis[J]. Acta Optica Sinica, 40, 0330002(2020).

    [44] Yin A, Chen T S. Quantitative fluorescence resonance energy transfer measurement based on spectral unmixing[J]. Chinese Journal of Lasers, 47, 0207009(2020).

    [45] Wang Y Y, Sun Z C, Xu D G et al. Detection of cerebral ischemia based on terahertz time-domain spectroscopy[J]. Acta Optica Sinica, 40, 0430001(2020).

    [46] Li W Z, Yuan X, Xu B et al. Applications of multiplexed immunohistochemistry/immunofluorescence and multispectral imaging technology in the field of tumor immunotherapy[J]. Journal of Chinese Pharmaceutical Sciences, 29, 734-747(2020).

    [47] Öncel C, Baser S. Giovanni battista morgagni (1682--1771)[J]. Journal of Neurology, 263, 1050-1052(2016). http://link.springer.com/article/10.1007/s00415-015-7936-8

    [48] Titford M. Rudolf Virchow: cellular pathologist[J]. Laboratory Medicine, 41, 311-312(2010).

    [49] Mansfield J R. Multispectral imaging: a review of its technical aspects and applications in anatomic pathology[J]. Veterinary Pathology, 51, 185-210(2014). http://smartsearch.nstl.gov.cn/paper_detail.html?id=e02977ccfb2a5d7ec2ad47706bcbae23

    [50] Ortega S, Halicek M, Fabelo H et al. Hyperspectral and multispectral imaging in digital and computational pathology: a systematic review[J]. Biomedical Optics Express, 11, 3195-3233(2020).

    [51] Spreinat A, Selvaggio G, Erpenbeck L et al. Multispectral near infrared absorption imaging for histology of skin cancer[J]. Journal of Biophotonics, 13, e201960080(2020). http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_wiley-blackwell-online-open_thesis/040006399003.html

    [52] Schwarz M, Buehler A, Aguirre J et al. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo[J]. Journal of Biophotonics, 9, 55-60(2016). http://www.ingentaconnect.com/content/bpl/jbio/2016/00000009/F0020001/art00009

    [53] Glazer A M, Farberg A S, Winkelmann R R et al. 76(6): AB212(2017).

    [54] He Q H, Wang R K, Wang R K. Hyperspectral imaging enabled by an unmodified smartphone for analyzing skin morphological features and monitoring hemodynamics[J]. Biomedical Optics Express, 11, 895-910(2020). http://www.researchgate.net/publication/338509305_Hyperspectral_imaging_enabled_by_unmodifiedsmartphone_for_analyzing_skin_morphologicalfeatures_and_monitoring_hemodynamics

    [55] Wu Y, Huang S, Wang J et al. Activatable probes for diagnosing and positioning liver injury and metastatic tumors by multispectral optoacoustic tomography[J]. Nature Communications, 9, 3983(2018). http://www.ncbi.nlm.nih.gov/pubmed/30266905

    [56] Jo J, Lee C H, Kopelman R et al. In vivo quantitative imaging of tumor pH by nanosonophore assisted multispectral photoacoustic imaging[J]. Nature Communications, 8, 471(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5589864/

    [57] Habibalahi A, Bala C, Allende A et al. Novel automated non-invasive detection of ocular surface squamous neoplasia using multispectral autofluorescence imaging[J]. The Ocular Surface, 17, 540-550(2019). http://www.sciencedirect.com/science/article/pii/S1542012418302842

    [58] Wisotzky E L, Rosenthal J C, Wege U et al. Surgical guidance for removal of cholesteatoma using a multispectral 3D-endoscope[J]. Sensors, 20, 5334(2020). http://www.researchgate.net/publication/344356391_Surgical_Guidance_for_Removal_of_Cholesteatoma_Using_a_Multispectral_3D-Endoscope/download

    [59] Goh Y, Balasundaram G, Moothanchery M et al. Multispectral optoacoustic tomography in assessment of breast tumor margins during breast-conserving surgery: a first-in-human case study[J]. Clinical Breast Cancer, 18, e1247-e1250(2018). http://www.ncbi.nlm.nih.gov/pubmed/30241967

    [60] Hu Z, Fang C, Li B et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows[J]. Nature Biomedical Engineering, 4, 259-271(2020). http://www.nature.com/articles/s41551-019-0494-0

    [61] Choi H S, Kim H K. Multispectral image-guided surgery in patients[J]. Nature Biomedical Engineering, 4, 245-246(2020). http://www.nature.com/articles/s41551-020-0536-7

    [62] Qiu L, Chuttani R, Pleskow D K et al. Multispectral light scattering endoscopic imaging of esophageal precancer[J]. Light, Science & Applications, 7, 17174(2018). http://www.zhangqiaokeyan.com/academic-journal-cn_light-science-applications-english_thesis/0201232261244.html

    [63] Schols R M, Dunias P, Wieringa F P et al. Multispectral characterization of tissues encountered during laparoscopic colorectal surgery[J]. Medical Engineering & Physics, 35, 1044-1050(2013). http://europepmc.org/abstract/MED/23391740

    [64] van Willigen D M, Buckle T et al. Multispectral fluorescence guided surgery; a feasibility study in a phantom using a clinical-grade laparoscopic camera system[J]. American Journal of Nuclear Medicine and Molecular Imaging, 7, 138-147(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5511123/

    [65] Behrooz A, Waterman P, Vasquez K O et al. Multispectral open-air intraoperative fluorescence imaging[J]. Optics Letters, 42, 2964-2967(2017).

    [66] Chen R, Lin X R, Ding T H. Liveness detection for iris recognition using multispectral images[J]. Pattern Recognition Letters, 33, 1513-1519(2012). http://dl.acm.org/doi/10.1016/j.patrec.2012.04.002

    [67] Vilaseca M, Mercadal R, Pujol J et al. Characterization of the human iris spectral reflectance with a multispectral imaging system[J]. Applied Optics, 47, 5622-5630(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000016000010000171000001&idtype=cvips&gifs=Yes

    [68] Gong Y Z, Zhang D, Shi P F et al. Handheld system design for dual-eye multispectral iris capture with one camera[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43, 1154-1166(2013). http://ieeexplore.ieee.org/document/6473911

    [69] Gong Y Z, Zhang D, Shi P F et al. High-speed multispectral iris capture system design[J]. IEEE Transactions on Instrumentation and Measurement, 61, 1966-1978(2012). http://ieeexplore.ieee.org/document/6153059

    [70] Gong Y Z, Zhang D, Shi P F et al. Optimal wavelength band clustering for multispectral iris recognition[J]. Applied Optics, 51, 4275-4284(2012). http://www.opticsinfobase.org/abstract.cfm?uri=ao-51-19-4275

    [71] Zhang D, Guo Z H, Lu G M et al. An online system of multispectral palmprint verification[J]. IEEE Transactions on Instrumentation and Measurement, 59, 480-490(2010). http://link.springer.com/content/pdf/10.1007/978-3-319-22485-5_6.pdf

    [72] Guo Z H, Zhang D, Zhang L et al. Feature band selection for online multispectral palmprint recognition[J]. IEEE Transactions on Information Forensics and Security, 7, 1094-1099(2012). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6158597

    [73] Gumaei A, Sammouda R. Al-SalmanA M S, et al. An improved multispectral palmprint recognition system using autoencoder with regularized extreme learning machine[J]. Computational Intelligence and Neuroscience, 2018, 8041609(2018).

    [74] Xu X, Guo Z, Song C et al. Multispectral palmprint recognition using a quaternion matrix[J]. Sensors, 12, 4633-4647(2012).

    [75] Hong D F, Liu W Q, Su J et al. A novel hierarchical approach for multispectral palmprint recognition[J]. Neurocomputing, 151, 511-521(2015). http://www.sciencedirect.com/science/article/pii/S0925231214011692

    [76] Bounneche M D, Boubchir L, Bouridane A et al. Multi-spectral palmprint recognition based on oriented multiscale log-Gabor filters[J]. Neurocomputing, 205, 274-286(2016).

    [77] Paquit V C, Tobin K W, Price J R et al. 3D and multispectral imaging for subcutaneous veins detection[J]. Optics Express, 17, 11360-11365(2009).

    [78] Stanuch M, Wodzinski M, Skalski A. Contact-free multispectral identity verification system using palm veins and deep neural network[J]. Sensors, 20, 5695(2020). http://www.researchgate.net/publication/346120374_Contact-Free_Multispectral_Identity_Verification_System_Using_Palm_Veins_and_Deep_Neural_Network

    [79] Song J H, Kim C, Yoo Y. Vein visualization using a smart phone with multispectral Wiener estimation for point-of-care applications[J]. IEEE Journal of Biomedical and Health Informatics, 19, 773-778(2015). http://ieeexplore.ieee.org/document/6777270/

    [80] Wieringa F P, Mastik F. Cate F J T, et al. Remote non-invasive stereoscopic imaging of blood vessels: first in-vivo results of a new multispectral contrast enhancement technology[J]. Annals of Biomedical Engineering, 34, 1870-1878(2006).

    [81] Koschan A, Yao Y, Chang H et al. Multispectral face imaging and analysis[M]. ∥Handbook of Face Recognition. London: Springer, 401-428(2011).

    [82] Li W, Dong M L, Lü N G et al. Multispectral face image registration based on T-distribution mixture model[J]. Acta Optica Sinica, 39, 0710001(2019).

    [83] Singh R, Vatsa M, Noore A. Hierarchical fusion of multi-spectral face images for improved recognition performance[J]. Information Fusion, 9, 200-210(2008). http://dl.acm.org/doi/abs/10.5555/1349890.1350044

    [84] Zheng Y F. Orientation-based face recognition using multispectral imagery and score fusion[J]. Optical Engineering, 50, 117202(2011). http://spie.org/Publications/Journal/10.1117/1.3643729

    Jianwei Chen, Hui Gong, Jing Yuan. Multispectral Imaging Technology and Its Applications in Biomedicine[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0400001
    Download Citation