• Laser & Optoelectronics Progress
  • Vol. 57, Issue 10, 100002 (2020)
Yuemeng Zhang, Ping Cai*, Jun Long, and Hao Yan
Author Affiliations
  • School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.3788/LOP57.100002 Cite this Article Set citation alerts
    Yuemeng Zhang, Ping Cai, Jun Long, Hao Yan. Review of Multi-Wavelength Digital Holography Metrology[J]. Laser & Optoelectronics Progress, 2020, 57(10): 100002 Copy Citation Text show less
    References

    [1] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters, 24, 291-293(1999).

    [2] Marquet P, Rappaz B, Magistretti P J et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy[J]. Optics Letters, 30, 468-470(2005).

    [3] Guo R L, Zhang W G, Liu R et al. Phase unwrapping in dual-wavelength digital holographic microscopy with total variation regularization[J]. Optics Letters, 43, 3449-3452(2018).

    [4] Forrester A T, Parkins W E, Gerjuoy E. On the possibility of observing beat frequencies between lines in the visible spectrum[J]. Physical Review, 72, 728(1947).

    [5] Gass J, Dakoff A, Kim M K. Phase imaging without 2π ambiguity by multiwavelength digital holography[J]. Optics Letters, 28, 1141-1143(2003).

    [6] Mann C J, Bingham P R, Paquit V C et al. Quantitative phase imaging by three-wavelength digital holography[J]. Optics Express, 16, 9753-9764(2008).

    [7] Wada A, Kato M, Ishii Y. Large step-height measurements using multiple-wavelength holographic interferometry with tunable laser diodes[J]. Journal of the Optical Society of America A, 25, 3013-3020(2008).

    [8] Khmaladze A, Matz R L, Zhang C et al. Dual-wavelength linear regression phase unwrapping in three-dimensional microscopic images of cancer cells[J]. Optics Letters, 36, 912-914(2011).

    [9] Li Y, Xiao W, Pan F. Multiple-wavelength-scanning-based phase unwrapping method for digital holographic microscopy[J]. Applied Optics, 53, 979-987(2014).

    [10] Zhang T, Unger K, Maire G et al. Multi-wavelength multi-angle reflection tomography[J]. Optics Express, 26, 26093-26105(2018).

    [11] Hosseini P, Jin D, Yaqoob Z et al. Single-shot dual-wavelength interferometric microscopy[J]. Methods, 136, 35-39(2018).

    [12] Pan F, Yang L Z, Xiao W. Coherent noise reduction in digital holographic microscopy by averaging multiple holograms recorded with a multimode laser[J]. Optics Express, 25, 21815-21825(2017).

    [13] Nomura T, Okamura M, Nitanai E et al. Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths[J]. Applied Optics, 47, 38-43(2008).

    [14] Di J L, Qu W J, Wu B J et al. Dual wavelength digital holography for improving the measurement accuracy[C]. International Conference on Optics in Precision Engineering & Nanotechnology(2013).

    [15] Carl D, Fratz M, Pfeifer M et al. Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths[J]. Applied Optics, 48, H1-H8(2009).

    [16] Fratz M, Carl D. Novel industry ready sensors for shape measurement based on multi wavelength digital holography[M]. ∥Fringe 2013. Berlin, Heidelberg: Springer Berlin Heidelberg, 479-484(2014).

    [17] Schiller A, Beckmann T, Fratz M et al. Digital holography on moving objects: multiwavelength height measurements on inclined surfaces[C]. Society of Photo-optical Instrumentation Engineers(2017).

    [18] Seyler T, Fratz M, Beckmann T et al. Extending the depth of field beyond geometrical imaging limitations using phase noise as a focus measure in multiwavelength digital holography[J]. Applied Sciences, 8, 1042(2018).

    [19] Schnars U, Jüptner W. Direct recording of holograms by a CCD target and numerical reconstruction[J]. Applied Optics, 33, 179-181(1994).

    [20] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 72, 156-160(1982).

    [21] Cuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography[J]. Applied Optics, 39, 4070-4075(2000).

    [22] Wada A, Kato M, Ishii Y. Multiple-wavelength digital holographic interferometry using tunable laser diodes[J]. Applied Optics, 47, 2053-2060(2008).

    [23] Colomb T, Krivec S, Hutter H et al. Digital holographic reflectometry[J]. Optics Express, 18, 3719-3731(2010).

    [24] Di J L, Zhang J W, Xi T L et al. Improvement of measurement accuracy in digital holographic microscopy by using dual-wavelength technique[J]. Nanolithography, MEMS, and MOEMS, 14, 041313(2015).

    [25] Kühn J, Colomb T, Montfort F et al. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition[J]. Optics Express, 15, 7231-7242(2007).

    [26] Tahara T, Gotohda T, Akamatsu T et al. High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography[J]. Optics Letters, 43, 2937-2940(2018).

    [27] Turko N A, Eravuchira P J, Barnea I et al. Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module[J]. Optics Letters, 43, 1943-1946(2018).

    [28] Tahara T, Kaku T, Arai Y. Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA)[J]. Optics Express, 22, 29594-29610(2014).

    [29] Abdelsalam D G, Magnusson R, Kim D. Single-shot, dual-wavelength digital holography based on polarizing separation[J]. Applied Optics, 50, 3360-3368(2011).

    [30] Kou Y L, Li E P, Di J L et al. Surface morphology measurement of tiny object based on dual-wavelength digital holography[J]. Chinese Journal of Lasers, 41, 0209010(2014).

    [31] Guo R L, Wang F. Compact and stable real-time dual-wavelength digital holographic microscopy with a long-working distance objective[J]. Optics Express, 25, 24512-24520(2017).

    [32] Liu L, Shan M G, Zhong Z et al. Simultaneous dual-wavelength off-axis flipping digital holography[J]. Optics Letters, 42, 4331-4334(2017).

    [33] Tayebi B, Han J H, Sharif F et al. Compact single-shot four-wavelength quantitative phase microscopy with polarization- and frequency-division demultiplexing[J]. Optics Express, 25, 20172-20182(2017).

    [34] Liu G, Scott P D. Phase retrieval and twin-image elimination for in-line Fresnel holograms[J]. Journal of the Optical Society of America A, 4, 159-165(1987).

    [35] Yamaguchi I, Zhang T. Phase-shifting digital holography[J]. Optics Letters, 22, 1268-1270(1997).

    [36] Meng X F, Cai L Z, Xu X F et al. Two-step phase-shifting interferometry and its application in image encryption[J]. Optics Letters, 31, 1414-1416(2006).

    [37] Shaked N T, Zhu Y Z, Rinehart M T et al. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells[J]. Optics Express, 17, 15585-15591(2009).

    [38] Awatsuji Y, Sasada M, Kubota T. Parallel quasi-phase-shifting digital holography[J]. Applied Physics Letters, 85, 1069-1071(2004).

    [39] Cai L Z, Liu Q, Yang X L. Generalized phase-shifting interferometry with arbitrary unknown phase steps for diffraction objects[J]. Optics Letters, 29, 183-185(2004).

    [40] Abdelsalam D G, Kim D. Two-wavelength in-line phase-shifting interferometry based on polarizing separation for accurate surface profiling[J]. Applied Optics, 50, 6153-6161(2011).

    [41] Barada D, Kiire T, Sugisaka J I et al. Simultaneous two-wavelength Doppler phase-shifting digital holography[J]. Applied Optics, 50, H237-H244(2011).

    [42] Xiong J X, Zhong L Y, Liu S D et al. Improved phase retrieval method of dual-wavelength interferometry based on a shorter synthetic-wavelength[J]. Optics Express, 25, 7181-7191(2017).

    [43] Zhang W P, Lu X X, Fei L H et al. Simultaneous phase-shifting dual-wavelength interferometry based on two-step demodulation algorithm[J]. Optics Letters, 39, 5375-5378(2014).

    [44] Fei L H, Lu X X, Wang H L et al. Single-wavelength phase retrieval method from simultaneous multi-wavelength in-line phase-shifting interferograms[J]. Optics Express, 22, 30910-30923(2014).

    [45] Zhang W P, Lu X X, Luo C S et al. Principal component analysis based simultaneous dual-wavelength phase-shifting interferometry[J]. Optics Communications, 341, 276-283(2015).

    [46] Qiu X, Zhong L Y, Xiong J X et al. Phase retrieval based on temporal and spatial hybrid matching in simultaneous phase-shifting dual-wavelength interferometry[J]. Optics Express, 24, 12776-12787(2016).

    [47] Li J S, Lu X X, Xu X F et al. Simultaneous phase-shifting dual-wavelength interferometry based on independent component analysis[J]. Applied Optics, 56, 3673-3678(2017).

    [48] Servin M, Padilla M, Garnica G. Synthesis of multi-wavelength temporal phase-shifting algorithms optimized for high signal-to-noise ratio and high detuning robustness using the frequency transfer function[J]. Optics Express, 24, 9766-9780(2016).

    [49] Lee Y, Ito Y, Tahara T et al. Single-shot dual-wavelength phase unwrapping in parallel phase-shifting digital holography[J]. Optics Letters, 39, 2374-2377(2014).

    [50] Safrani A, Abdulhalim I. High-speed 3D imaging using two-wavelength parallel-phase-shift interferometry[J]. Optics Letters, 40, 4651-4654(2015).

    [51] Ney M, Safrani A, Abdulhalim I. Three wavelengths parallel phase-shift interferometry for real-time focus tracking and vibration measurement[J]. Optics Letters, 42, 719-722(2017).

    [52] Kumar U P, Mohan N K, Kothiyal M P. Red-green-blue wavelength interferometry and TV holography for surface metrology[J]. Journal of Optics, 40, 176-183(2011).

    [53] Desse J M, Picart P, Tankam P. Sensor influence in digital 3λ holographic interferometry[J]. Measurement Science and Technology, 22, 064005(2011).

    [54] Pförtner A, Schwider J. Red-green-blue interferometer for the metrology of discontinuous structures[J]. Applied Optics, 42, 667-673(2003).

    [55] Zhao H, Zeng F C, Zhong L Y et al. Quantitative measurement of cell phase using dual-wavelength digital holographic microscopy with color CMOS[J]. Laser & Optoelectronics Progress, 52, 070901(2015).

    [56] Tian X B, Tu X Z, Zhang J C et al. Snapshot multi-wavelength interference microscope[J]. Optics Express, 26, 18279-18291(2018).

    [57] Rinehart M T, Shaked N T, Jenness N J et al. Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera[J]. Optics Letters, 35, 2612-2614(2010).

    [58] Min J W, Yao B L, Gao P et al. Dual-wavelength slightly off-axis digital holographic microscopy[J]. Applied Optics, 51, 191-196(2012).

    [59] Lue N, Kang J W, Hillman T R et al. Single-shot quantitative dispersion phase microscopy[J]. Applied Physics Letters, 101, 084101(2012).

    [60] Dubois F, Joannes L, Legros J C. Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence[J]. Applied Optics, 38, 7085-7094(1999).

    [61] Pedrini G, Schedin S. Short coherence digital holography for 3D microscopy[J]. Optik - International Journal for Light and Electron Optics, 112, 427-432(2001).

    [62] Warnasooriya N, Kim M K. LED-based multi-wavelength phase imaging interference microscopy[J]. Optics Express, 15, 9239-9247(2007).

    [63] Kemper B, Stürwald S, Remmersmann C et al. Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces[J]. Optics and Lasers in Engineering, 46, 499-507(2008).

    [64] Jeon S, Cho J, Jin J N et al. Dual-wavelength digital holography with a single low-coherence light source[J]. Optics Express, 24, 18408-18416(2016).

    [65] Cho J, Lim J, Jeon S et al. Dual-wavelength off-axis digital holography using a single light-emitting diode[J]. Optics Express, 26, 2123-2131(2018).

    [66] Deng L J, Huang X Y, Zeng L M et al. Dual-wavelength image-plane digital holographic microscopy based on bi-color LED chips[J]. Acta Optica Sinica, 38, 0111004(2018).

    [67] Yu L F, Cai L L. Iterative algorithm with a constraint condition for numerical reconstruction of a three-dimensional object from its hologram[J]. Journal of the Optical Society of America A, 18, 1033-1045(2001).

    [68] Xu L, Mater M, Ni J. Focus detection criterion for refocusing in multi-wavelength digital holography[J]. Optics Express, 19, 14779-14793(2011).

    [69] Dohet-Eraly J, Yourassowsky C, Dubois F. Fast numerical autofocus of multispectral complex fields in digital holographic microscopy with a criterion based on the phase in the Fourier domain[J]. Optics Letters, 41, 4071-4074(2016).

    [70] Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Applied Optics, 38, 6994-7001(1999).

    [71] Colomb T, Kühn J, Charrière F et al. Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram[J]. Optics Express, 14, 4300-4306(2006).

    [72] Colomb T, Cuche E, Charrière F et al. Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation[J]. Applied Optics, 45, 851-863(2006).

    [73] Colomb T, Montfort F, Kühn J et al. Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy[J]. Journal of the Optical Society of America A, 23, 3177-3190(2006).

    [74] Ferraro P, de Nicola S, Finizio A et al. Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging[J]. Applied Optics, 42, 1938-1946(2003).

    [75] Stępień P, Korbuszewski D, Kujawińska M. Digital holographic microscopy with extended field of view using tool for generic image stitching[J]. ETRI Journal, 41, 73-83(2019).

    [76] Nguyen T, Bui V, Lam V et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 25, 15043-15057(2017).

    [77] Upputuri P K. Measurement of discontinuous surfaces using multiple-wavelengthinterferometry[J]. Optical Engineering, 48, 073603(2009).

    [78] Nguyen T, Nehmetallah G, Raub C et al. Accurate quantitative phase digital holographic microscopy with single- and multiple-wavelength telecentric and nontelecentric configurations[J]. Applied Optics, 55, 5666-5683(2016).

    [79] Khodadad D, Bergström P, Hällstig E et al. Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements[J]. Applied Optics, 54, 5003-5010(2015).

    [80] Ferraro P, Grilli S, Miccio L et al. Full color 3-D imaging by digital holography and removal of chromatic aberrations[J]. Journal of Display Technology, 4, 97-100(2008).

    [81] Alfieri D. Coppola G,de Nicola S, et al. Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength[J]. Optics Communications, 260, 113-116(2006).

    [82] Colomb T, Kühn J, Depeursinge C et al. Several micron-range measurements with sub-nanometric resolution by the use of dual-wavelength digital holography and vertical scanning[J]. Proceedings of SPIE, 7389, 73891H(2009).

    [83] Nadeborn W, Andrä P, Osten W. A robust procedure for absolute phase measurement[J]. Optics and Lasers in Engineering, 24, 245-260(1996).

    [84] Parshall D, Kim M K. Digital holographic microscopy with dual-wavelength phase unwrapping[J]. Applied Optics, 45, 451-459(2006).

    [85] Shan M G, Liu L, Zhong Z et al. Improved phase reconstruction using linear programming for dual-wavelength digital holography[J]. Optics and Lasers in Engineering, 117, 1-6(2019).

    [86] Rivenson Y, Zhang Y B, Günaydın H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 7, 17141(2018).

    [87] Ren Z B, Xu Z M, Lam E Y. Learning-based nonparametric autofocusing for digital holography[J]. Optica, 5, 337-344(2018).

    [88] Wang H, Lyu M. Situ G H. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction[J]. Optics Express, 26, 22603-22614(2018).

    [89] Sawaf F, Groves R M. Phase discontinuity predictions using a machine-learning trained kernel[J]. Applied Optics, 53, 5439-5447(2014).

    [90] Spoorthi G E, Gorthi S. Gorthi R K S S. PhaseNet: a deep convolutional neural network for two-dimensional phase unwrapping[J]. IEEE Signal Processing Letters, 26, 54-58(2019).

    [91] Zhang J C, Tian X B, Shao J B et al. Phase unwrapping in optical metrology via denoised and convolutional segmentation networks[J]. Optics Express, 27, 14903-14912(2019).

    [92] Wang K Q, Li Y, Qian K M et al. One-step robust deep learning phase unwrapping[J]. Optics Express, 27, 15100-15115(2019).

    Yuemeng Zhang, Ping Cai, Jun Long, Hao Yan. Review of Multi-Wavelength Digital Holography Metrology[J]. Laser & Optoelectronics Progress, 2020, 57(10): 100002
    Download Citation