• Laser & Optoelectronics Progress
  • Vol. 59, Issue 10, 1010011 (2022)
Ruoyan Wei1、*, Junfeng Wang1, and Xiaoqing Zhu2
Author Affiliations
  • 1College of Information Technology, Hebei University of Economics and Business, Shijiazhuang 050061, Hebei , China
  • 2Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
  • show less
    DOI: 10.3788/LOP202259.1010011 Cite this Article Set citation alerts
    Ruoyan Wei, Junfeng Wang, Xiaoqing Zhu. Inliers Ratio Promotion Algorithm Based on Global Topological Distribution of Image Matching Points[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1010011 Copy Citation Text show less
    References

    [1] Kong B, Supanc̆ic̆ J, Ramanan D et al. Cross-domain image matching with deep feature maps[J]. International Journal of Computer Vision, 127, 1738-1750(2019).

    [2] Shu A, Pei H D, Duan H X. Trinocular stereo visual measurement method for spatial non-cooperative target[J]. Acta Optica Sinica, 41, 0615001(2021).

    [3] Jang J, Jo Y, Shin M et al. Camera orientation estimation using motion-based vanishing point detection for advanced driver-assistance systems[J]. IEEE Transactions on Intelligent Transportation Systems, 22, 6286-6296(2021).

    [4] Zhao D D, Li J H, Tan F L et al. Image registration algorithm based on smoothness constraint and cluster analysis[J]. Laser & Optoelectronics Progress, 58, 0210010(2021).

    [5] Ma J Y, Zhao J, Tian J W et al. Robust point matching via vector field consensus[J]. IEEE Transactions on Image Processing, 23, 1706-1721(2014).

    [6] Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 24, 381-395(1981).

    [7] Torr P H S, Murray D W. The development and comparison of robust methods for estimating the fundamental matrix[J]. International Journal of Computer Vision, 24, 271-300(1997).

    [8] Zhang Z Y. Determining the epipolar geometry and its uncertainty: a review[J]. International Journal of Computer Vision, 27, 161-195(1998).

    [9] Torr P H S, Zisserman A. MLESAC: a new robust estimator with application to estimating image geometry[J]. Computer Vision and Image Understanding, 78, 138-156(2000).

    [10] Torr P H S. Bayesian model estimation and selection for epipolar geometry and generic manifold fitting[J]. International Journal of Computer Vision, 50, 35-61(2002).

    [11] Matas J, Chum O. Randomized RANSAC with Td, d test[J]. Image and Vision Computing, 22, 837-842(2004).

    [12] Matas J, Chum O. Randomized RANSAC with sequential probability ratio test[C], 1727-1732(2005).

    [13] Clipp B, Lim J, Frahm J M et al. Parallel, real-time visual SLAM[C], 3961-3968(2010).

    [14] Chum O, Matas J, Kittler J. Locally optimized RANSAC[M]. Michaelis B, Krell G. Pattern recognition, 2781, 236-243(2003).

    [15] Hast A, Nysjö J, Marchetti A. Optimal RANSAC: towards a repeatable algorithm for finding the optimal set[J]. Journal of WSCG, 21, 21-30(2013).

    [16] Barath D, Matas J, Noskova J. MAGSAC: marginalizing sample consensus[C], 10189-10197(2019).

    [17] Barath D, Matas J. Graph-cut RANSAC[C], 6733-6741(2018).

    [18] Van Hung L, Vu H, Nguyen T T et al. Acquiring qualified samples for RANSAC using geometrical constraints[J]. Pattern Recognition Letters, 102, 58-66(2018).

    [19] Chum O, Matas J. Matching with PROSAC-progressive sample consensus[C], 220-226(2005).

    [20] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 60, 91-110(2004).

    [21] Myatt D R, Torr P H S, Nasuto S J et al. NAPSAC: high noise, high dimensional robust estimation-it’s in the bag[C], 458-467(2002).

    [22] Sattler T, Leibe B, Kobbelt L. SCRAMSAC: improving RANSAC’s efficiency with a spatial consistency filter[C], 2090-2097(2009).

    [23] Ni K, Jin H L, Dellaert F. GroupSAC: efficient consensus in the presence of groupings[C], 2193-2200(2009).

    [24] Bian J W, Lin W Y, Matsushita Y. GMS: grid-based motion statistics for fast, ultra-robust feature correspondence[C], 17355528(2017).

    [25] Barath D, Ivashechkin M, Matas J. Progressive NAPSAC: sampling from gradually growing neighborhoods[EB/OL]. https://arxiv.org/abs/1906.02295

    [26] Fotouhi M, Hekmatian H, Kashani-Nezhad M A et al. SC-RANSAC: spatial consistency on RANSAC[J]. Multimedia Tools and Applications, 78, 9429-9461(2019).

    [27] Raguram R, Chum O, Pollefeys M et al. USAC: a universal framework for random sample consensus[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 2022-2038(2013).

    [28] Ivashechkin M, Barath D, Matas J. USACv20: robust essential, fundamental and homography matrix estimation[EB/OL]. https://arxiv.org/abs/2104.05044

    [29] Ivashechkin M, Barath D, Matas J. VSAC: efficient and accurate estimator for H and F[EB/OL]. https://arxiv.org/abs/2106.10240

    [30] Cavalli L, Larsson V, Oswald M R et al. Handcrafted outlier detection revisited[M]. Vedaldi A, Bischof H, Brox T, et al. Computer vision-ECCV 2020, 12364, 770-787(2020).

    [31] Park Y H, Kwon O S. Multiple homographies estimation using a guided sequential RANSAC[J]. The Journal of the Korea Contents Association, 10, 10-22(2010).

    [32] Yi K M, Trulls E, Ono Y et al. Learning to find good correspondences[C], 2666-2674(2018).

    [33] Zhang J H, Sun D W, Luo Z X et al. Learning two-view correspondences and geometry using order-aware network[C], 5844-5853(2019).

    [34] Zhao C, Cao Z G, Li C et al. NM-net: mining reliable neighbors for robust feature correspondences[C], 215-224(2019).

    [35] Sarlin P E, DeTone D, Malisiewicz T et al. SuperGlue: learning feature matching with graph neural networks[C], 4937-4946(2020).

    [38] Sadr M, Torrilhon M, Gorji M H. Gaussian process regression for maximum entropy distribution[J]. Journal of Computational Physics, 418, 109644(2020).

    [39] Adelaide RMF. CONSAC: robust multi-model fitting by conditional sample consensus[EB/OL]. https://github.com/fkluger/consac

    Ruoyan Wei, Junfeng Wang, Xiaoqing Zhu. Inliers Ratio Promotion Algorithm Based on Global Topological Distribution of Image Matching Points[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1010011
    Download Citation