• Photonics Research
  • Vol. 8, Issue 9, 1468 (2020)
Mu Yang1、2, Qiang Li1、2, Zheng-Hao Liu1、2, Ze-Yan Hao1、2, Chang-Liang Ren3、4、*, Jin-Shi Xu1、2、5、*, Chuan-Feng Li1、2、6、*, and Guang-Can Guo1、2
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • 3Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
  • 4e-mail: renchangliang@cigit.ac.cn
  • 5e-mail: jsxu@ustc.edu.cn
  • 6e-mail: cfli@ustc.edu.cn
  • show less
    DOI: 10.1364/PRJ.393480 Cite this Article Set citation alerts
    Mu Yang, Qiang Li, Zheng-Hao Liu, Ze-Yan Hao, Chang-Liang Ren, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Experimental observation of an anomalous weak value without post-selection[J]. Photonics Research, 2020, 8(9): 1468 Copy Citation Text show less
    References

    [1] Y. Aharonov, D. Z. Albert, L. Vaidman. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett., 60, 1351-1354(1988).

    [2] I. M. Duck, P. M. Stevenson, E. C. G. Sudarshan. The sense in which a “weak measurement” of a spin-1/2 particle’s spin component yields a value 100. Phys. Rev. D, 40, 2112-2117(1989).

    [3] A. G. Kofman, S. Ashkab, F. Nori. Nonperturbative theory of weak pre-and post-selected measurements. Phys. Rep., 520, 43-133(2012).

    [4] J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, R. W. Boyd. Colloquium: understanding quantum weak values: basics and applications. Rev. Mod. Phys., 86, 307-316(2014).

    [5] Y. Aharonov, A. Botero, S. Popescu, B. Reznik, J. Tollaksen. Revisiting Hardy’s paradox: counterfactual statements, real measurements, entanglement and weak values. Phys. Lett. A, 301, 130-138(2002).

    [6] J. S. Lundeen, A. M. Steinberg. Experimental joint weak measurement on a photon pair as a probe of Hardy’s paradox. Phys. Rev. Lett., 102, 020404(2009).

    [7] K. Yokota, T. Yamamoto, M. Koashi, N. Imoto. Direct observation of Hardy’s paradox by joint weak measurement with an entangled photon pair. New J. Phys., 11, 033011(2009).

    [8] H. M. Wiseman. Grounding Bohmian mechanics in weak values and bayesianism. New J. Phys., 9, 165-175(2007).

    [9] R. Mir, J. S. Lundeen, M. W. Mitchell, A. M. Steinberg, J. L. Garretson, H. M. Wiseman. A double-slit which-way experiment on the complementarity uncertainty debate. New J. Phys., 9, 287(2007).

    [10] K. J. Resch, J. S. Lundeen, A. M. Steinberg. Experimental realization of the quantum box problem. Phys. Lett. A, 324, 125-131(2004).

    [11] A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, A. N. Korotkov. Experimental violation of a Bell’s inequality in time with weak measurement. Nat. Phys., 6, 442-447(2010).

    [12] J. Dressel, C. J. Broadbent, J. C. Howell, A. N. Jordan. Experimental violation of two-party Leggett-Garg inequalities with semiweak measurements. Phys. Rev. Lett., 106, 040402(2011).

    [13] Y. Suzuki, M. Iinuma, H. F. Hofmann. Violation of Leggett–Garg inequalities in quantum measurements with variable resolution and back-action. New J. Phys., 14, 103022(2012).

    [14] C. Emary, N. Lambert, F. Nori. Leggett-Garg inequalities. Rep. Prog. Phys., 77, 016001(2014).

    [15] A. N. Jordan, J. Martinez-Rincon, J. C. Howell. Technical advantages for weak-value amplification: when less is more. Phys. Rev. X, 4, 011031(2014).

    [16] G. I. Viza, J. Martinez-Rincon, G. B. Alves, A. N. Jordan, J. C. Howell. Experimentally quantifying the advantages of weak-value-based metrology. Phys. Rev. A, 92, 032127(2015).

    [17] P. B. Dixon, D. J. Starling, A. N. Jordan, J. C. Howell. Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett., 102, 173601(2009).

    [18] O. Hosten, P. Kwiat. Observation of the spin Hall effect of light via weak measurements. Science, 319, 787-790(2008).

    [19] N. Brunner, C. Simon. Measuring small longitudinal phase shifts: weak measurements or standard interferometry?. Phys. Rev. Lett., 105, 010405(2010).

    [20] X.-Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.-F. Li, G.-C. Guo. Phase estimation with weak measurement using a white light source. Phys. Rev. Lett., 111, 033604(2013).

    [21] G. Strubi, C. Bruder. Measuring ultrasmall time delays of light by joint weak measurements. Phys. Rev. Lett., 110, 083605(2013).

    [22] A. Feizpour, X. Xing, A. M. Steinberg. Amplifying single-photon nonlinearity using weak measurements. Phys. Rev. Lett., 107, 133603(2011).

    [23] J. Dressel, K. Y. Bliokh, F. Nori. Classical field approach to quantum weak measurements. Phys. Rev. Lett., 112, 110407(2014).

    [24] C. Ferrie, J. Combes. Weak value amplification is suboptimal for estimation and detection. Phys. Rev. Lett., 112, 040406(2014).

    [25] J. Combes, C. Ferrie, Z. Jiang, C. M. Caves. Quantum limits on postselected, probabilistic quantum metrology. Phys. Rev. A, 89, 052117(2014).

    [26] L. Vaidman. Weak value controversy. Philos. Trans. R. Soc. London, Ser. A, 375, 20160395(2017).

    [27] J. Martínez-Rincón, W.-T. Liu, G. I. Viza, J. C. Howell. Can anomalous amplification be attained without postselection?. Phys. Rev. Lett., 116, 100803(2016).

    [28] L. P. García-Pintos, J. Dressel. Past observable dynamics of a continuously monitored qubit. Phys. Rev. A, 96, 062110(2017).

    [29] G. Mitchison, R. Jozsa, S. Popescu. Sequential weak measurement. Phys. Rev. A, 76, 062105(2007).

    [30] A. A. Abbott, R. Silva, J. Wechs, N. Brunner, C. Branciard. Anomalous weak values without post-selection. Quantum, 3, 194-208(2019).

    [31] E. Cohen. Quantum measurements-yet another surprise. Quantum Views, 3, 27(2019).

    [32] H. M. Wiseman. Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation. Phys. Rev. A, 65, 032111(2002).

    [33] Y. Turek, H. Kobayashi, T. Akutsu, C. P. Sun, Y. Shikano. Post-selected von Neumann measurement with Hermite–Gaussian and Laguerre–Gaussian pointer states. New J. Phys., 17, 083029(2015).

    [34] J. S. Chen, M. J. Hu, X. M. Hu, B. H. Liu, Y. F. Huang, C. F. Li, C. G. Guo, Y. S. Zhang. Experimental realization of sequential weak measurements of non-commuting Pauli observables. Opt. Express, 27, 6089-6097(2019).

    [35] Q. Li, C.-J. Zhang, Z.-D. Cheng, W.-Z. Liu, J.-F. Wang, F.-F. Yan, Z.-H. Lin, Y. Xiao, K. Sun, Y.-T. Wang, J.-S. Tang, J.-S. Xu, C.-F. Li, G.-C. Guo. Experimental simulation of anti-parity-time symmetric Lorentz dynamics. Optica, 6, 67-71(2019).

    [36] 36Corr(A,B)=∑i,j(Ai,j−A¯)(Bi,j−B¯)∑i,j(Ai,j−A¯)2∑i,j(Bi,j−B¯)2, where Ai,j(Bi,j) represents the gray level of image A(B) at pixel (i,j), and A¯(B¯) means the average value.

    [37] H. Kobayashi, G. Puentes, Y. Shikano. Extracting joint weak values from two-dimensional spatial displacements. Phys. Rev. A, 86, 053805(2012).

    [38] S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, A. M. Steinberg. Observing the average trajectories of single photons in a two-slit interferometer. Science, 332, 1170-1173(2011).

    [39] M. Yang, Y. Xiao, Y. W. Liao, Z. H. Liu, X. Y. Xu, J. S. Xu, C. F. Li, G. C. Guo. Zonal reconstruction of photonic wavefunction via momentum weak measurement. Laser Photon. Rev., 14, 1900251(2020).

    [40] G. Horowitz, J. Maldacena. The black hole final state. J. High Energy Phys., 2004, 008(2004).

    [41] Y. Aharonov, E. Cohen. Weak values and quantum nonlocality(2015).

    [42] E. Cohen, M. Nowakowski. Comment on ‘Measurements without probabilities in the final state proposal’. Phys. Rev. D, 97, 088501(2018).

    [43] R. Bousso, D. Stanford. Reply to “Comment on ‘Measurements without probabilities in the final state proposal’”. Phys. Rev. D, 97, 088502(2018).

    [44] Y. Aharonov, S. Popescu, J. Tollaksen. Each instant of time a new universe. Quantum Theory: A Two-Time Success Story, 21-36(2014).

    [45] Y.-W. Cho, Y. Kim, Y.-H. Choi, Y.-S. Kim, S.-W. Han, S.-Y. Lee, S. Moon, Y.-H. Kim. Emergence of the geometric phase from quantum measurement back-action. Nat. Phys., 15, 665-670(2019).

    Mu Yang, Qiang Li, Zheng-Hao Liu, Ze-Yan Hao, Chang-Liang Ren, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Experimental observation of an anomalous weak value without post-selection[J]. Photonics Research, 2020, 8(9): 1468
    Download Citation