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Weak measurement has been shown to play important roles in the investigation of both fundamental and prac-
tical problems. Anomalous weak values are generally believed to be observed only when post-selection is per-
formed, i.e., only a particular subset of the data is considered. Here, we experimentally demonstrate that an
anomalous weak value can be obtained without discarding any data by performing a sequential weak measure-
ment on a single-qubit system. By controlling the blazing density of the hologram on a spatial light modulator, the
measurement strength can be conveniently controlled. Such an anomalous phenomenon disappears when the
measurement strength of the first observable becomes strong. Moreover, we find that the anomalous weak value
cannot be observed without post-selection when the sequential measurement is performed on each of the com-
ponents of a two-qubit system, which confirms that the observed anomalous weak value is based on sequential
weak measurement of two noncommutative operators. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.393480

1. INTRODUCTION

The concept of weak measurement [1–4] was introduced by
Aharonov, Albert, and Vaidman in 1988. Their theory is based
on the von Neumann measurement with a very weak coupling
between two quantum systems. Compared to the strong mea-
surement, weak measurement theory is a very important non-
perturbative theory of quantum measurements. Over several
decades of development, there have been many notable inves-
tigations from both fundamental and practical perspectives. On
the one hand, weak measurement provides novel insights into
a number of fundamental quantum effects, including the role
of the uncertainty principle in the Hardy’s paradox [5–7], the
double-slit experiment [8,9], the three-box paradox [10], and
Leggett-Garg inequalities [11–14]. On the other hand, it is
considered to be useful for the signal amplification while de-
creasing or retaining the technical noise [15,16] in parameter
estimations, such as amplification measurements of small trans-
verse [17,18] and longitudinal shifts [19–21], optical nonli-
nearities [22], and the Poynting vector field [23].

In all these applications, the strange characteristic that
the weak value obtained in the weak measurement can even
exceed the eigenvalue range of a typical strong or projective

measurement and is generally complex (also known as “anoma-
lous weak value”), is usually considered to play a vital role. The
standard weak value is defined with post-selection, and the
anomalous weak value is usually observed by post-selecting a
small subset of data. Therefore, the anomalous weak value is
a result of post-selection, which is widely accepted in the com-
munity. However there are still great controversies on this
point, especially for the validity of weak value technology in
quantum metrology [24–26]. With the in-depth research, it
is shown that anomalous amplification [27] and unusual
smoothed estimation [28] can be realized without the require-
ment of post-selection of weak measurement techniques in high
precise metrology protocols. This result gives us some enlight-
enments, but it still does not answer the question: can anoma-
lous weak values be attained without post-selection? In fact, it is
correct that post-selection is necessary to observe the anoma-
lous weak values in a single weak measurement case. But, it
is not the case in general. Recently, a theoretical investigation
pointed out that an anomalous weak value can be obtained
without post-selection by sequential weak measurements
[29,30], which provided a more general insight and was
deemed as “yet another surprise” [31].
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In this work, we experimentally obtain anomalous weak val-
ues in a sequential weak measurement without post-selection,
i.e., without discarding any data, in an all-optical system. The
photonic polarizations and transverse momenta are chosen to
be the system states and pointers, respectively. A sequential
weak measurement on the product of two single-qubit observ-
ables is realized for arbitrary measurement strength controlled
by the phase patterns on a liquid crystal spatial light modulator
(SLM). The counter-intuitive average value of joint pointer’s
deflection is observed when the measurement strength of the
first observable is weak, while the anomalous value disappears
when the measurement strength of the first observable in-
creases. Moreover, we further perform a sequential weak mea-
surement on two observables each of which belongs to the
components of a two-qubit system and find that an anomalous
weak value can never be observed based on commutative
sequential weak measurements without post-selection.

2. THEORETICAL FRAMEWORK AND
PROTOCOL

The standard form of a weak value is given by

hAf
ψ iW :� hf jÂjψi

hf jψi , (1)

which is the mean value of observable Â when weakly measured
between a pre-selected state jψi and a post-selected state jf i
[1]. As introduced in Refs. [30,32], in particular, a trivial, deter-
ministic measurement of the identity operator I amounts to
performing no post-selection. A weak value with no post-
selection, can be defined as

hAI
ψ iW :� hψ jÂjψi: (2)

Obviously, the weak value with no post-selection is equal to
the expectation (average) value of Â. The result of these cases is
restricted to lie in �ηmin�Â�, ηmax�Â�� (ηmin�max� represents the
minimum (maximum) eigenvalue), which means anomalous
weak values cannot be observed. It is therefore generally con-
sidered that anomalous weak values can only be observed by
post-selecting a small subset of data.

However, such an interpretation is invalid for sequential
weak measurements [30]. The sequential weak value
h�A1A2�Iψ iW with no post-selection is defined (Â1 and Â2

are independent observables) as follows:

h�A1A2�Iψ iW :� hψ jÂ1Â2jψi: (3)

We should note that when Â1 and Â2 are not commute, and
for good choices of A1, A2, and jψi, h�A1A2�Iψ iW will not be
contained within the interval �ηmin�Â1, Â2�, ηmax�Â1, Â2��,
where ηmin�max��Â1, Â2� � min�max�k,lηk�Â1�ηl �Â2� (k, l de-
note the indexes of eigenvalues). Due to the sequential nature
of the weak measurements, an anomalous weak value for se-
quential weak measurements can occur without post-selection.

We consider two pointers interacting with a quantum sys-
tem one after another as illustrated in Fig. 1. Suppose a qubit
system initially prepared in the general state jψi, while two-
pointer states are prepared in jϕ1i and jϕ2i, respectively.
The evolution operator between the system and pointer is

denoted as Û i � exp�iγiÂi ⊗ F̂ i�, where i ∈ f1, 2g denotes
the ith weak measurement, γi is the interaction coupling,
and F̂ i is an operator of the pointer. The result of the sequential
weak measurements can be linked to the anomalous weak value
without post-selection h�A1A2�Iψ iW .

Specifically, let us consider a qubit system initially pre-
pared in the state jψi � j0i, assuming Âi to be the projection
observable on the system with Âi � jaiihaij, where jaii �
1
2 j0i − �−1�i

ffiffi
3

p
2 j1i, and to each measurement is associated a

momentum operator F̂ i � p̂i of the pointers. Considering
a Gaussian pointer [33] with transverse wavefunction
ϕi � exp�−x2∕σ2i � (σi is a constant), the joint pointer average
position is given by [30]

hx̂1 ⊗ x̂2i �
1

16

�
1 − 3e

−
γ2
1

8σ2
1

�
γ1γ2, (4)

where x̂i represents the ith position operator. Here we define
the inferred values ofM � hx̂1 ⊗ x̂2i∕γ1γ2. Since each output
pointer observable has an average shift in the range of [0,1], the
average values are naturally expected within the range [0,1].
However, when the first measurement is sufficiently weak,
γ1 → 0, hx̂1 ⊗ x̂2i ≈ − 1

8 γ1γ2 lied out of the interval, which
shows the average product of the pointer displacements is
proportionally linked to the anomalous weak value, where
M → Re�h�A1A2�Iψ iW � � − 1

8. Interestingly, in the real weak
limit, as γ1 → 0, then hx̂1 ⊗ x̂2i → 0 also, unless γ2 is in-
creased to compensate it. In contrast, when the first measure-
ment is strong (γ1 → ∞), hx̂1 ⊗ x̂2i ≈ 1

16
γ1γ2 is consistent

with the product of the two observables’ expectation values,
where M → hψ jA1jψijha1ja2ij2 � 1

16.

3. EXPERIMENTAL SETUP AND RESULTS

We experimentally demonstrate sequential weak measurements
[34] by using the SLM, in which a phase φ (φ � α~rmod 2π,
α ∈ N ) that changes linearly along the ~r direction is implemented
to the input photons. The evolution can be described as

Ûr � exp�−iγexpjH ihH j ⊗ p̂~r�, (5)

Time

Weak 
Interaction

U1

t1 t2 t3

( )2 0

System

Pointer2

Pointer1

Joint measurement

Weak 
Interaction

U2

Probe

( )1 0

( )0

Fig. 1. Theoretical protocol. The system initially in the state jψ�0�i
is sequentially weak coupled with two pointers in the initial states of
jϕ1�0�i and jϕ2�0�i, respectively. The time sequence is denoted as t1,
t2, and t3. The pointers are measured individually or jointly.
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where p̂~r � −i ∂
∂~r (setting ℏ � 1) represents the momentum op-

erator, jH i represents the horizontal polarization of the photon,
and γexp � kα �k ∈ R� represents the coupling strength which
can be conveniently tuned by changing the blazing density of
the hologram on the SLM (see Appendices A and B for more
details). We set γ1 � γ2 � γexp in the experiment.

In the experiment, the photon’s polarizations and transverse
field momenta �p̂~x , p̂~y� are chosen to be the system Âi and
pointers F̂ i, respectively. The experimental setup is illustrated
in Fig. 2(a). Single photons (SPs) from an intrinsic defect in
a GaN crystal are filtered by a single mode fiber [35] (see
Appendices A and B for more details). The zero-delay time
of the second-order correlation function g2�0� is measured
to be 0.262 and fitted to be 0.025, which clearly demonstrates
the single photon property.

A half-wave plate (HWP1) with the optical axis set to be
30° is used to prepare the polarization state of the photon
to be ja1i � 1

2 jH i �
ffiffi
3

p
2 jV i, where jV i represents the vertical

polarization. Then the photons are focused on the right screen
of SLM for the first weak coupling by a convex lens with a focal
length of 150 mm. The hologram loaded on the right area of

SLM is a vertical blazed grating, and satisfies φright�x, y� �
α~xmod 2π �α ∈ N�. In the experiment, γexp � 0.0237α
(see Appendices A and B for details). This progress can be
defined as Û 1 � exp�iγexpÂ1 ⊗ p̂~x�.

Similarly, through a lens with a focal length of 75 mm,
photons are re-focused on the left screen of SLM for the
second weak coupling, and the evolution becomes Û 2 �
exp�iγexpÂ2 ⊗ p̂~y�. The left hologram is a horizontal grating,
which satisfies φleft�x, y� � α~ymod2π. Another HWP2 with
the optical axis set to be −30° is placed before the screen to
rotate jH i�jV i� to the state of ja2i � 1

2 jH i −
ffiffi
3

p
2 jV i

�ja⊥2 i �
ffiffi
3

p
2 jH i − 1

2 jV i�. The third Fourier lens is used to
translate the photons back to the coordinate space, which
are directly detected by an intensified charge coupled device
(ICCD) without post-selection of polarizations.

Figure 2(b) shows several spatial distributions of the photons
with different coupling strengths. The scale of images is
1024 × 1024 and the pixel length is 13.5 μm. The coupling
strength γexp varies from 0 to 0.37 mm. When γexp is less than
0.1 mm, the coupling strength is so small that the transverse
coordinate deflection is much less than the Rayleigh distance.
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Fig. 2. Experimental setup and deflection images. (a) Single photons from a single photon emitter (SPE) are sent to the sequential weak mea-
surement setup. The single photon property is characterized by the second order autocorrelation function, in which the dip at the zero delay time
is fitted to be g2�0� � 0.025. The polarization of the single photons is set by a half-wave plate (HWP1). A lens (f � 150 mm) is used to focus the
photon to the right screen of the spatial light modulator (SLM) for the horizontal weak coupling, where the hologram loaded is a vertical grating. The
coupling strength is adjusted by changing the density of the grating. The photons are then refocused on the left screen of the SLM by a lens with
f � 75 mm for the vertical coupling, where the hologram loaded is a horizontal grating with the same density. The HWP2 is used to rotate the
polarization of the photon before the screen to adjust the direction of the pointer. The photons are then finally detected by an intensified charge
coupled device (ICCD) in the focus plane of a lens with f � 150 mm. (b) The images of photon distributions detected by the ICCD with different
coupling strengths γexp. The inserts with blue background are the theoretical predictions of the corresponding experimental images when
γexp > 0.2366, and the Corr represents the correlation value between experimental and theoretical images.
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With the increase of coupling strength, the deflections of the
transverse coordinates are clearly observed, including downward
deflection ϕ�x � γexp, y�, rightward deflection ϕ�x, y � γexp�
and down-rightward deflection ϕ�x � γexp, y � γexp� after se-
quential weak measurements Û 1 and Û 2, respectively. The in-
sets in Fig. 2(b) show the theoretical output patterns, of which
the similarity is quantitatively determined by the correlation
value (Corr) [36] compared with the experimental images.
The Corr is larger than 0.96 when γexp > 0.2366; the errors
are mainly due to the aberrations in optical systems and the
inaccuracy of wave plate rotation.

To quantitatively describe the anomalous weak values, we
define the transverse coordinate pointer’s position hK̂ i as the
mean of the transverse field coordinate as follows:

hK̂ i �
X
x, y

K · jϕ 0�x, y�j2∕
X
x, y

jϕ 0�x, y�j2, (6)

where K̂ ∈ fx̂, ŷ, x̂ ⊗ ŷg. ϕ 0�x, y� is the final photonic trans-
verse wave function and x̂ ⊗ ŷ represents the joint pointer
position operator [37]. The result of the sequential measure-
ment is proportional to the product of the pointer positions.

Figure 3 shows the deflection of the pointer as a function of
the coupling strength. The coupling strength γexp varies from
0 to 0.711 mm. The pointer positions of horizontal and vertical
transverse coordinates (hx̂i and hŷi) are shown in Fig. 3(a) with
the brown and blue dots representing the experimental results
and the brown and blue lines representing the corresponding
theoretical predictions, respectively. No matter what the cou-
pling strength is, we can find that hx̂i and hŷi is larger than 0.
The joint pointer positions hx̂ ⊗ ŷi are shown in Fig. 3(b).
The green dots represent the experimental results with the
green line representing the corresponding theoretical predic-
tion. Anomalous phenomenon hx̂ ⊗ ŷi < 0 can be observed
when the coupling strength γexp is less than 0.331 mm, which
is shown as the red dots. When γexp � 0.189 mm, the reversed
deflection of the joint pointer reaches the maximum. The values
are smaller than prediction, which may be due to the slight tilt of
the ICCD camera and the optical aberrations. The error bars
represent the corresponding standard deviation �Δ�hx̂ ⊗ ŷi��.
Figure 3(c) shows the inferred values of M � hx̂ ⊗ ŷi∕γ2exp.
When γexp → 0, M equals the real part of the weak value
Re�h�A1A2�Iψ iW � � − 1

8. However, the experimental errors
Δ�hx̂ ⊗ ŷi�∕γ2exp also get amplified with γexp → 0, which
makes the inferred weak values get unreliable. In spite of this,
when 0.13 mm < γexp < 0.3 mm, M still approximates to the
anomalous weak value − 1

8, and the experimental tendency here
is consistent with the theoretical prediction.

Moreover, as a comparison, considering the situation of a
sequential weak measurement of two observables, which are
measured on each of two qubits respectively, there is no such
anomalous deflection at all. Supposing a sequential measure-
ment of the commuting observables Â1 ⊗ I and I ⊗ Â2 is per-
formed on the bipartite system, the average weak value is equal
to the expectation value of Â1 ⊗ Â2 in the absence of any post-
selection, with h�Â1 ⊗ Â2�Iψ iW � hψ jÂ1 ⊗ Â2jψi, which can
never exceed the range of eigenvalues of the observable.

We experimentally investigate the case of weak measure-
ment on two individual photons, which corresponds to the se-
quential weak measurement on different parts of a bipartite

system. We first apply the Û 1 to a photon and obtain the de-
flection of the pointer’s positions in the x direction (hx̂i). We
then implement the Û 2 to the other photon and obtain the
deflection of the pointer’s positions in the y direction (hŷi).
The experimental results of hx̂i (brown dots) and hŷi (blue
dots) with the corresponding theoretical predictions repre-
sented as brown and blue lines, respectively, are shown in
Fig. 4(a). The experimental results of the joint pointer deflec-
tion hx̂ ⊗ ŷi (green dots) and the corresponding theoretical
prediction (green line) are shown in Fig. 4(b), in which the
values of hx̂ ⊗ ŷi are all larger than zero. Error bars represent
the corresponding standard deviations. All position deflections
are larger than zero and satisfy hx̂i � hŷi � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihx̂ ⊗ ŷip

. There
is not any anomalous phenomenon for sequential weak mea-
surement with any coupling strength for two qubit systems,
since the two observables are commutative in the sequen-
tial case.
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Fig. 3. Deflections of the pointer’s position and the normalized re-
sult of sequential weak measurements in the one-qubit system. (a) The
brown and blue dots represent the experimental results of the pointer
positions hx̂i and hŷi, respectively. The brown and blue lines represent
the corresponding theoretical predictions. (b) The green dots represent
the experimental results of the joint pointer position hx̂ ⊗ ŷi with the
green solid line representing the corresponding theoretical prediction.
The red data represents the anomalous joint pointer position. (c) The
black dots represent the inferred values of M � hx̂ ⊗ ŷi∕γ2exp, while
the theoretical prediction is shown as a black line.
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4. CONCLUSION AND DISCUSSION

We have experimentally carried out a sequential measurement
of two observables in a single-qubit system and a two-qubit
system for arbitrary measurement strength with the SLM. The
anomalous weak values are obtained without post-selection, in
which the paradox of average pointer deflection is successfully
observed in a single-qubit system. Such an anomalous phe-
nomenon disappears when the measurement strength of the
first observable becomes strong. On the other hand, when a

sequential weak measurement is commutative, the anomalous
weak value can never be observed without post-selection.

The experimental method of sequential weak measurement
is implemented by taking the photon polarizations and trans-
verse field momenta as the system and pointers, respectively.
Compared with other methods [38,39], the advantage of this
approach is that the coupling strength can be conveniently ad-
justed, so one can obtain weak values at different coupling
strengths.

The tendencies of experimental data coincide with the theo-
retical predictions. Since the region to detect deflections of pho-
ton distributions associated with the anomalous weak value
is less than 10−3 mm2, the output results are easily disturbed.
Moreover, the error of weak values will be rapidly increased as
the coupling strength decreases. This effect can be mitigated by
increasing γ2. This would give an idea of the tradeoff between
the fact that, theoretically, one obtains a more anomalous weak
value the further one goes to the weak regime, and the fact
that the observable effect also becomes smaller in the weak
limitation.

By controlling their measurement strengths from weak to
strong, different results of a sequential measurement of two ob-
servables in weak and strong limits have been clearly shown.
The anomalous weak values emerge in the sequential weak
measurements. Recently, weak values and sequential weak mea-
surements have played crucial roles in understanding funda-
mental problems such as the information paradox in black
holes [40–43], time [44], and geometric phase [45]. The se-
quential measurement technology demonstrated in this work
may be useful for exploring a series of fundamental physical
concepts.

APPENDIX A: WEAK MEASUREMENT BASED
ON THE LIQUID CRYSTAL SPATIAL LIGHT
MODULATOR

Figure 5(a) shows the process of weak measurement. The
polarization of photons is treated as the system state and
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Fig. 5. Weak measurement based on the liquid crystal spatial light modulator (SLM). (a) The input photons are transformed from the coordinate
space to the momentum space by a Fourier lens and focused on the screen of SLM. A phase that changes linearly along the x direction is applied on
photons by the SLM, and then photons are re-transformed from the momentum space to the coordinate space by another Fourier lens. The photon
wave packet will be transversely shifted slightly, which is known as weak measurement. (b) The relation between grating densities α on SLM and
coupling strength γexp.
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Fig. 4. Deflections of pointer positions via sequential weak mea-
surements in the two-qubit system. (a) The brown and blue dots
represent the experimental results with the brown and blue lines
representing the corresponding theoretical predictions, respectively.
(b) The green dots represent the joint average pointer positions
hx̂ ⊗ ŷi with the green line representing the corresponding theoretical
prediction.
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momenta �p̂x , p̂y� of the transverse field as the pointers.
The initial state is prepared as

jΨi � jϕ�x, y�i�ajH i � bjV i�, (A1)

where jϕ�x, y�i represents the photon’s spatial wave function,
jH �V �i means the photonic horizontal (vertical) polarization,
and (a, b) are dimensionless complex coefficients. Through the
first lens, the input photons are transformed from the coordi-
nate space into the momentum space, which is denoted as

F �jϕ�x, y�i��ajH i � bjV i�
� jU �η, ξ�i�ajH i � bjV i�, (A2)

where jU �η, ξ�i means the wave function in momentum
representation. By using the liquid crystal spatial light modu-
lator (SLM) to add phases φSLM � αxmod2π �α ∈ N� on the
horizontal polarized photons, where grating density is deter-
mined by α, the state becomes

ajU �η, ξ�ieiγexpηjH i � bjU �η, ξ�ijV i�, (A3)

where γexp � kα�k∈R� represents coupling strength. Figure 5(b)
shows the relationship between the grating parameter α and the
coupling strength γexp. The coefficient k can be deduced from the
fitting line of �α, γexp�, which reads as k � 0.0237. Through an-
other Fourier lens, photons are re-transformed to the coordi-
nate space, which can be expressed as

aF −1�jU �η, ξ�ieiγexpη�jH i � bjF −1�U �η, ξ�i�jV i
� ajϕ�x − γexp, y�ijH i � bjϕ�x, y�ijV i: (A4)

In summary, this process simulates a weak interaction evo-
lution Û , which satisfies

Û jϕ�x, y�i�ajH i � bjV i�
� ajϕ�x − γexp, y�ijH i � bjϕ�x, y�ijV i, (A5)

where Û x � exp�−iγexpjH ihH ⊗ jp̂~x�, and p̂~x � −i ∂
∂~x (assum-

ing ℏ � 1) represents the horizontal momentum operator.

APPENDIX B: PREPARATION OF THE SINGLE
PHOTON EMITTER

The experimental setup of the single photon emitter (SPE) is
shown in Fig. 6. The intrinsic defect in the GaN sample is ex-
cited by a 532 nm continuous wave laser. The laser is focused
by an objective with a high-NA of 0.9 after reflected by a di-
chroic mirror (DM). The fluorescence is collected by the same
objective and is filtered by a bandpass filter with the central

wavelength 808 nm. The single photons are then coupled into
a single mode fiber (SMF), which are guided to the sequential
weak measurements.
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