• Photonics Research
  • Vol. 10, Issue 4, 965 (2022)
Xianfeng Wu, Zhenchun Li, Yuan Zhao, Chaoshun Yang, Wei Zhao, and Xiaopeng Zhao*
Author Affiliations
  • Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710129, China
  • show less
    DOI: 10.1364/PRJ.447131 Cite this Article Set citation alerts
    Xianfeng Wu, Zhenchun Li, Yuan Zhao, Chaoshun Yang, Wei Zhao, Xiaopeng Zhao, "Abnormal optical response of PAMAM dendrimer-based silver nanocomposite metamaterials," Photonics Res. 10, 965 (2022) Copy Citation Text show less
    References

    [1] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang. Three-dimensional optical metamaterial with a negative refractive index. Nature, 455, 376-379(2008).

    [2] S. P. Burgos, R. de Waele, A. Polman, H. A. Atwater. A single-layer wide-angle negative-index metamaterial at visible frequencies. Nat. Mater., 9, 407-412(2010).

    [3] D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, J. A. Rogers. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat. Nanotechnol., 6, 402-407(2011).

    [4] C. Garcia-Meca, J. Hurtado, J. Marti, A. Martinez, W. Dickson, A. V. Zayats. Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths. Phys. Rev. Lett., 106, 067402(2011).

    [5] T. Xu, A. Agrawal, M. Abashin, K. J. Chau, H. J. Lezec. All-angle negative refraction and active flat lensing of ultraviolet light. Nature, 497, 470-474(2013).

    [6] A. Lakhtakia. Positive and negative Goos-Hänchen shifts and negative phase-velocity mediums (alias left-handed materials). Int. J. Electron. Commun., 58, 229-231(2004).

    [7] Z. H. Fang, H. Chen, F. S. Yang, C. R. Luo, X. P. Zhao. Slowing down light using a dendritic cell cluster metasurface waveguide. Sci. Rep., 6, 37856(2016).

    [8] A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, H. Park. Visible-frequency hyperbolic metasurface. Nature, 522, 192-196(2015).

    [9] H. Chen, J. Zhao, Z. Fang, D. An, X. Zhao. Visible light metasurfaces assembled by quasiperiodic dendritic cluster sets. Adv. Mater. Interfaces, 6, 1801834(2019).

    [10] N. Fang, H. Lee, C. Sun, X. Zhang. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [11] J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun., 1, 143(2010).

    [12] L. Liu, P. Gao, K. Liu, W. Kong, Z. Zhao, M. Pu, C. Wang, X. Luo. Nanofocusing of circularly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials. Mater. Horiz., 4, 290-296(2017).

    [13] X. Ni, J. W. Zi, M. Mrejen, Y. Wang, X. Zhang. An ultrathin invisibility skin cloak for visible light. Science, 349, 1310-1314(2015).

    [14] L. Y. Beliaev, O. Takayama, P. N. Melentiev, A. V. Lavrinenko. Photoluminescence control by hyperbolic metamaterials and metasurfaces: a review. Opto-Electron. Adv., 4, 210031(2021).

    [15] K. L. Tsakmakidis, A. D. Boardman, O. Hess. ‘Trapped rainbow’ storage of light in metamaterials. Nature, 450, 397-401(2007).

    [16] O. Hosten, P. Kwiat. Observation of the spin Hall effect of light via weak measurements. Science, 319, 787-790(2008).

    [17] V. Shalaev, A. Kildishev, T. Klar, A. Popov, V. Drachev. Optical negative-index metamaterials: from low to no loss. Nat. Photonics, 1, 41-48(2006).

    [18] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [19] X. Zhao. Bottom-up fabrication methods of optical metamaterials. J. Mater. Chem., 22, 9439-9449(2012).

    [20] K. J. Stebe, E. Lewandowski, M. Ghosh. Materials science. Oriented assembly of metamaterials. Science, 325, 159-160(2009).

    [21] H. Alaeian, J. A. Dionne. Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials. Opt. Express, 20, 15781-15796(2012).

    [22] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem., 107, 668-677(2003).

    [23] S. Lee. Colloidal superlattices for unnaturally high-index metamaterials at broadband optical frequencies. Opt. Express, 23, 28170-28181(2015).

    [24] K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, C. A. Mirkin. Using DNA to design plasmonic metamaterials with tunable optical properties. Adv. Mater., 26, 653-659(2014).

    [25] D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith. A new class of polymers: starburst-dendritic macromolecules. Polym. J., 17, 117-132(1985).

    [26] D. A. Tomalia, H. Baker, J. De Wald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith. Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules, 19, 2466-2468(1986).

    [27] G. Dang, Y. Shi, Z. Fu, W. Yang. Fe3O4@PS@PAMAM-Ag magnetic nanocatalysts and their recoverable catalytic ability. Chin. J. Catal., 33, 651-658(2012).

    [28] T. Wang, Y. Zhang, L. Wei, Y. G. Teng, T. Honda, I. Ojima. Design, synthesis, and biological evaluations of asymmetric bow-tie PAMAM dendrimer-based conjugates for tumor-targeted drug delivery. ACS Omega, 3, 3717-3736(2018).

    [29] B. Vivek, E. Prasad. Self-assembly-directed aerogel and membrane formation from a magnetic composite: an approach to developing multifunctional materials. ACS Appl. Mater. Interfaces, 9, 7619-7628(2017).

    [30] M. A. van Dongen, S. Vaidyanathan, M. M. B. Holl. PAMAM dendrimers as quantized building blocks for novel nanostructures. Soft Matter, 9, 11188-11196(2013).

    [31] S. Aliannejadi, A. H. Hassani, H. A. Panahi, S. M. Borghei. Fabrication and characterization of high-branched recyclable PAMAM dendrimer polymers on the modified magnetic nanoparticles for removing naphthalene from aqueous solutions. Microchem. J., 145, 767-777(2019).

    [32] X. Zhou, Q. H. Fu, J. Zhao, Y. Yang, X. P. Zhao. Negative permeability and subwavelength focusing of quasi-periodic dendritic cell metamaterials. Opt. Express, 14, 7188-7197(2006).

    [33] H. Liu, X. Zhao, Y. Yang, Q. Li, J. Lv. Fabrication of infrared left‐handed metamaterials via double template-assisted electrochemical deposition. Adv. Mater., 20, 2050-2054(2008).

    [34] S. J. Palmer, X. Xiao, N. Pazos-Perez, L. Guerrini, M. A. Correa-Duarte, S. A. Maier, R. V. Craster, R. A. Alvarez-Puebla, V. Giannini. Extraordinarily transparent compact metallic metamaterials. Nat. Commun., 10, 2118(2019).

    [35] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

    [36] K. Esumi, A. Suzuki, N. Aihara, K. Usui, K. Torigoe. Preparation of gold colloids with UV irradiation using dendrimers as stabilizer. Langmuir, 14, 3157-3159(1998).

    [37] S. Keki, J. Torok, G. Deak, L. Daroczi, M. Zsuga. Silver nanoparticles by PAMAM-assisted photochemical reduction of Ag+. J. Colloid Interface Sci., 229, 550-553(2000).

    [38] U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters(1995).

    [39] F. Goos, H. Hanchen. Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann. Phys., 436, 333-346(1947).

    [40] M. Onoda, S. Murakami, N. Nagaosa. Hall effect of light. Phys. Rev. Lett., 93, 083901(2004).

    [41] S. A. Taya, E. J. El-Farram, T. M. El-Agez. Goos–Hänchen shift as a probe in evanescent slab waveguide sensors. Int. J. Electron. Commun., 66, 204-210(2012).

    [42] Y. Yang, T. Lee, M. Kim, C. Jung, T. Badloe, D. Lee, S. Lee, H.-J. Lee, J. Rho. Dynamic optical spin Hall effect in chitosan-coated all-dielectric metamaterials for a biosensing platform. IEEE J. Sel. Top. Quantum Electron., 27, 7300608(2021).

    [43] R. Wang, J. Zhou, K. Zeng, S. Chen, X. Ling, W. Shu, H. Luo, S. Wen. Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect. APL Photon., 5, 016105(2020).

    [44] A. Shaltout, J. Liu, A. Kildishev, V. Shalaev. Photonic spin Hall effect in gap-plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica, 2, 860-863(2015).

    [45] K. Ando, M. Morikawa, T. Trypiniotis, Y. Fujikawa, C. H. W. Barnes, E. Saitoh. Photoinduced inverse spin-Hall effect: conversion of light-polarization information into electric voltage. Appl. Phys. Lett., 96, 082502(2010).

    [46] M. Kim, D. Lee, T. H.-Y. Nguyen, H.-J. Lee, G. Byun, J. Rho. Total reflection-induced efficiency enhancement of the spin Hall effect of light. ACS Photon., 8, 2705-2712(2021).

    [47] M. Kim, D. Lee, H. Cho, B. Min, J. Rho. Spin Hall effect of light with near-unity efficiency in the microwave. Laser Photon. Rev., 15, 2000393(2020).

    [48] C. Prajapati, D. Ranganathan, J. Joseph. Interferometric method to measure the Goos-Hanchen shift. J. Opt. Soc. Am. A, 30, 741-747(2013).

    [49] C. Prajapati, D. Ranganathan, J. Joseph. Spin Hall effect of light measured by interferometry. Opt. Lett., 38, 2459-2462(2013).

    [50] T. Ma, G. Shvets. All-Si valley-Hall photonic topological insulator. New J. Phys., 18, 025012(2016).

    [51] M. Hafezi, E. A. Demler, M. D. Lukin, J. M. Taylor. Robust optical delay lines with topological protection. Nat. Phys., 7, 907-912(2011).

    [52] M. Hafezi, S. Mittal, J. Fan, A. Migdall, J. M. Taylor. Imaging topological edge states in silicon photonics. Nat. Photonics, 7, 1001-1005(2013).

    [53] A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, G. Shvets. Photonic topological insulators. Nat. Mater., 12, 233-239(2013).

    [54] L.-H. Wu, X. Hu. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett., 114, 223901(2015).

    [55] D. Malterre, B. Kierren, Y. Fagot-Revurat, C. Didiot, F. G. de Abajo, F. Schiller, J. Cordón, J. Ortega. Symmetry breaking and gap opening in two-dimensional hexagonal lattices. New J. Phys., 13, 013026(2011).

    Xianfeng Wu, Zhenchun Li, Yuan Zhao, Chaoshun Yang, Wei Zhao, Xiaopeng Zhao, "Abnormal optical response of PAMAM dendrimer-based silver nanocomposite metamaterials," Photonics Res. 10, 965 (2022)
    Download Citation