• Laser & Optoelectronics Progress
  • Vol. 59, Issue 19, 1914005 (2022)
Shu Du, Ayiguli·Kasimu, Yutao Zhang, and Wurikaixi·Aiyiti*
Author Affiliations
  • School of Mechanical Engineering, Xinjiang University, Urumqi 830017, Xinjiang, China
  • show less
    DOI: 10.3788/LOP202259.1914005 Cite this Article Set citation alerts
    Shu Du, Ayiguli·Kasimu, Yutao Zhang, Wurikaixi·Aiyiti. Mechanical Properties of 316L Stainless Steel Lattice Structure Prepared by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1914005 Copy Citation Text show less
    References

    [1] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [2] Hao Y B, Zhao K, Huang Y L et al. Microstructures and mechanical properties of doubled annealed laser melting deposited TC11 titanium alloy[J]. Chinese Journal of Lasers, 48, 2202001(2021).

    [3] Yin B Z, Qin Y, Wen P et al. Laser Powder bed fusion for fabrication of metal orthopedic implants[J]. Chinese Journal of Lasers, 47, 1100001(2020).

    [4] Qin Y L, Sun B H, Zhang H et al. Development of selective laser melted aluminum alloys and aluminum matrix composites in aerospace field[J]. Chinese Journal of Lasers, 48, 1402002(2021).

    [5] Gu D D, Shi X Y, Poprawe R et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 372, eabg1487(2021).

    [6] Zhang B, Cao Y, Wang L et al. Anisotropy of body-centered-cubic porous structures by selective laser melting[J]. Chinese Journal of Lasers, 44, 0802005(2017).

    [7] Xiao L J, Song W D. Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: experiments[J]. International Journal of Impact Engineering, 111, 255-272(2018).

    [8] Harris J A, Winter R E, McShane G J. Impact response of additively manufactured metallic hybrid lattice materials[J]. International Journal of Impact Engineering, 104, 177-191(2017).

    [9] Liao Z Y, Wang Y J, Wang S T. Graded-density lattice structure optimization design based on topology optimization[J]. Journal of Mechanical Engineering, 55, 65-72(2019).

    [10] Yang X, Ma W J, Wang Y et al. Research progress of metal lattice porous materials for additive manufacturing[J]. Materials Reports, 35, 7114-7120(2021).

    [11] Yang J Z, Jin X, Gao H R et al. Additive manufacturing of trabecular tantalum scaffolds by laser powder bed fusion: mechanical property evaluation and porous structure characterization[J]. Materials Characterization, 170, 110694(2020).

    [12] Chen Z Y, Yan X C, Yin S et al. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth[J]. Materials Science and Engineering: C, 106, 110289(2020).

    [13] Mower T M, Long M J. Mechanical behavior of additive manufactured, powder-bed laser-fused materials[J]. Materials Science and Engineering: A, 651, 198-213(2016).

    [14] Wei G, Zhang W, Deng Y F. Identification and validation of constitutive parameters of 45 steel based on J-C model[J]. Journal of Vibration and Shock, 38, 173-178(2019).

    [15] Karkalos N E, Markopoulos A P. Determination of Johnson-Cook material model parameters by an optimization approach using the fireworks algorithm[J]. Procedia Manufacturing, 22, 107-113(2018).

    Shu Du, Ayiguli·Kasimu, Yutao Zhang, Wurikaixi·Aiyiti. Mechanical Properties of 316L Stainless Steel Lattice Structure Prepared by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1914005
    Download Citation