• Laser & Optoelectronics Progress
  • Vol. 59, Issue 6, 0617012 (2022)
Yitao Cao1、2, Xue Wang1、2, Xinchao Lu1、*, and Chengjun Huang1、2、**
Author Affiliations
  • 1Health Electronics Center, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
  • 2School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP202259.0617012 Cite this Article Set citation alerts
    Yitao Cao, Xue Wang, Xinchao Lu, Chengjun Huang. Label-Free Optical Microscopy Technique and Its Biomedical Applications[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617012 Copy Citation Text show less
    References

    [1] Lichtman J W, Conchello J A. Fluorescence microscopy[J]. Nature Methods, 2, 910-919(2005).

    [2] Huang B, Bates M, Zhuang X W. Super-resolution fluorescence microscopy[J]. Annual Review of Biochemistry, 78, 993-1016(2009).

    [3] Wang X, Tu S J, Liu X et al. Advance and prospect for three-dimensional super-resolution microscopy[J]. Laser & Optoelectronics Progress, 58, 2200001(2021).

    [4] Zhang C, Aldana-Mendoza J A. Coherent Raman scattering microscopy for chemical imaging of biological systems[J]. Journal of Physics: Photonics, 3, 032002(2021).

    [5] Liu K, Li J S, Raghunathan R et al. The progress of label-free optical imaging in Alzheimer’s disease screening and diagnosis[J]. Frontiers in Aging Neuroscience, 13, 699024(2021).

    [6] Min W. Label-free optical imaging of nonfluorescent molecules by stimulated radiation[J]. Current Opinion in Chemical Biology, 15, 831-837(2011).

    [7] Zhang D P, Bian Q, Zhou Y et al. The application of label-free imaging technologies in transdermal research for deeper mechanism revealing[J]. Asian Journal of Pharmaceutical Sciences, 16, 265-279(2021).

    [8] Hoebe R A, van Oven C H, Gadella T W J et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging[J]. Nature Biotechnology, 25, 249-253(2007).

    [9] Zhang J, Hong L, Ren S et al. Research progress on label-free microscopic imaging technology[J]. Laser & Optoelectronics Progress, 56, 070005(2019).

    [10] Potcoava M C, Futia G L, Aughenbaugh J et al. Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells[J]. Journal of Biomedical Optics, 19, 111605(2014).

    [11] Li R, Wang X X, Zhou Y et al. Advances in nonlinear optical microscopy for biophotonics[J]. Journal of Nanophotonics, 12, 033007(2018).

    [12] Freudiger C W, Min W, Saar B G et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 322, 1857-1861(2008).

    [13] Wang X, Lu X C, Huang C J. Advanced label-free laser scanning microscopy and its biological imaging application[J]. Applied Sciences, 11, 1002(2021).

    [14] Cheng J X, Xie X S. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine[J]. Science, 350, aaa8870(2015).

    [15] Nan X L, Cheng J X, Xie X S. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy[J]. Journal of Lipid Research, 44, 2202-2208(2003).

    [16] Hellerer T, Axäng C, Brackmann C et al. Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 14658-14663(2007).

    [17] Lyn R K, Kennedy D C, Stolow A et al. Dynamics of lipid droplets induced by the hepatitis C virus core protein[J]. Biochemical and Biophysical Research Communications, 399, 518-524(2010).

    [18] Day J P R, Rago G, Domke K F et al. Label-free imaging of lipophilic bioactive molecules during lipid digestion by multiplex coherent anti-Stokes Raman scattering microspectroscopy[J]. Journal of the American Chemical Society, 132, 8433-8439(2010).

    [19] Paar M, Jüngst C, Steiner N A et al. Remodeling of lipid droplets during lipolysis and growth in adipocytes[J]. Journal of Biological Chemistry, 287, 11164-11173(2012).

    [20] di Napoli C, Pope I, Masia F et al. Hyperspectral and differential CARS microscopy for quantitative chemical imaging in human adipocytes[J]. Biomedical Optics Express, 5, 1378-1390(2014).

    [21] Zhang C, Boppart S A. Dynamic signatures of lipid droplets as new markers to quantify cellular metabolic changes[J]. Analytical Chemistry, 92, 15943-15952(2020).

    [22] Zhang C, Li J J, Lan L et al. Quantification of lipid metabolism in living cells through the dynamics of lipid droplets measured by stimulated Raman scattering imaging[J]. Analytical Chemistry, 89, 4502-4507(2017).

    [23] Fu D, Zhou J, Zhu W S et al. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering[J]. Nature Chemistry, 6, 614-622(2014).

    [24] Chiu W S, Belsey N A, Garrett N L et al. Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 7725-7730(2015).

    [25] Karanja C W, Hong W L, Younis W et al. Stimulated Raman imaging reveals aberrant lipogenesis as a metabolic marker for azole-resistant candida albicans[J]. Analytical Chemistry, 89, 9822-9829(2017).

    [26] Hong W L, Karanja C W, Abutaleb N S et al. Antibiotic susceptibility determination within one cell cycle at single-bacterium level by stimulated Raman metabolic imaging[J]. Analytical Chemistry, 90, 3737-3743(2018).

    [27] Ji M B, Arbel M, Zhang L L et al. Label-free imaging of amyloid plaques in Alzheimer’s disease with stimulated Raman scattering microscopy[J]. Science Advances, 4, eaat7715(2018).

    [28] Sarri B, Canonge R, Audier X et al. Fast stimulated Raman and second harmonic generation imaging for intraoperative gastro-intestinal cancer detection[J]. Scientific Reports, 9, 10052(2019).

    [29] Boyer D, Tamarat P, Maali A et al. Photothermal imaging of nanometer-sized metal particles among scatterers[J]. Science, 297, 1160-1163(2002).

    [30] Berciaud S, Lasne D, Blab G A et al. Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment[J]. Physical Review B, 73, 045424(2006).

    [31] Berciaud S, Cognet L, Blab G A et al. Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals[J]. Physical Review Letters, 93, 257402(2004).

    [32] Lasne D, Blab G A, de Giorgi F et al. Label-free optical imaging of mitochondria in live cells[J]. Optics Express, 15, 14184-14193(2007).

    [33] Brusnichkin A V, Nedosekin D A, Galanzha E I et al. Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions[J]. Journal of Biophotonics, 3, 791-806(2010).

    [34] Miyazaki J, Toumon Y. Label-free dynamic imaging of mitochondria and lysosomes within living cells via simultaneous dual-pump photothermal microscopy[J]. Biomedical Optics Express, 10, 5852-5861(2019).

    [35] He J P, Miyazaki J, Wang N et al. Label-free imaging of melanoma with nonlinear photothermal microscopy[J]. Optics Letters, 40, 1141-1144(2015).

    [36] Lim J M, Park C, Park J S et al. Cytoplasmic protein imaging with mid-infrared photothermal microscopy: cellular dynamics of live neurons and oligodendrocytes[J]. The Journal of Physical Chemistry Letters, 10, 2857-2861(2019).

    [37] Zhang Y, Yurdakul C, Devaux A J et al. Vibrational spectroscopic detection of a single virus by mid-infrared photothermal microscopy[J]. Analytical Chemistry, 93, 4100-4107(2021).

    [38] Lu S J, Min W, Chong S S et al. Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy[J]. Applied Physics Letters, 96, 113701(2010).

    [39] He J P, Wang N, Tsurui H et al. Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: differentiate malignant melanoma from benign tumor tissue[J]. Scientific Reports, 6, 30209(2016).

    [40] Zhang D L, Li C, Zhang C et al. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution[J]. Science Advances, 2, e1600521(2016).

    [41] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: review[J]. Sensors and Actuators B: Chemical, 54, 3-15(1999).

    [42] Orlowski R, Raether H. The total reflection of light at smooth and rough silver films and surface plasmons[J]. Surface Science, 54, 303-308(1976).

    [43] Watanabe K, Matsuura K, Kawata F et al. Scanning and non-scanning surface plasmon microscopy to observe cell adhesion sites[J]. Biomedical Optics Express, 3, 354-359(2012).

    [44] Wang X, Wang C, Sun X J et al. Locally excited surface plasmon resonance for refractive index sensing with high sensitivity and high resolution[J]. Optics Letters, 46, 3625-3628(2021).

    [45] Sun X Q, Liu H Y, Jiang L W et al. Detecting a single nanoparticle by imaging the localized enhancement and interference of surface plasmon polaritons[J]. Optics Letters, 44, 5707-5710(2019).

    [46] Wang S P, Shan X N, Patel U et al. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 16028-16032(2010).

    [47] Sun X Q, Liu H Y, Yang Y et al. Imaging to single virus by using surface plasmon polariton scattering[J]. Proceedings of SPIE, 10244, 1024425(2017).

    [48] Yu H, Shan X N, Wang S P et al. Plasmonic imaging and detection of single DNA molecules[J]. ACS Nano, 8, 3427-3433(2014).

    [49] Zhang P F, Ma G Z, Dong W et al. Plasmonic scattering imaging of single proteins and binding kinetics[J]. Nature Methods, 17, 1010-1017(2020).

    [50] Wang W, Yang Y Z, Wang S P et al. Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells[J]. Nature Chemistry, 4, 846-853(2012).

    [51] Yang Y Z, Yu H, Shan X N et al. Label-free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique[J]. Small, 11, 2878-2884(2015).

    [52] Syal K, Iriya R, Yang Y Z et al. Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale[J]. ACS Nano, 10, 845-852(2016).

    [53] Yang Y T, Shen G X, Wang H et al. Interferometric plasmonic imaging and detection of single exosomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 10275-10280(2018).

    [54] Giebel K F, Bechinger C, Herminghaus S et al. Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy[J]. Biophysical Journal, 76, 509-516(1999).

    [55] Wang W, Wang S P, Liu Q et al. Mapping single-cell-substrate interactions by surface plasmon resonance microscopy[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 28, 13373-13379(2012).

    [56] Toma K, Kano H, Offenhäusser A. Label-free measurement of cell-electrode cleft gap distance with high spatial resolution surface plasmon microscopy[J]. ACS Nano, 8, 12612-12619(2014).

    [57] Kreysing E, Hassani H, Hampe N et al. Nanometer-resolved mapping of cell-substrate distances of contracting cardiomyocytes using surface plasmon resonance microscopy[J]. ACS Nano, 12, 8934-8942(2018).

    [58] Lindfors K, Kalkbrenner T, Stoller P et al. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy[J]. Physical Review Letters, 93, 037401(2004).

    [59] Jacobsen V, Stoller P, Brunner C et al. Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface[J]. Optics Express, 14, 405-414(2006).

    [60] Kukura P, Ewers H, Müller C et al. High-speed nanoscopic tracking of the position and orientation of a single virus[J]. Nature Methods, 6, 923-927(2009).

    [61] Ortega-Arroyo J, Kukura P. Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy[J]. Physical Chemistry Chemical Physics: PCCP, 14, 15625-15636(2012).

    [62] Priest L, Peters J S, Kukura P. Scattering-based light microscopy: from metal nanoparticles to single proteins[J]. Chemical Reviews, 121, 11937-11970(2021).

    [63] Ewers H, Jacobsen V, Klotzsch E et al. Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers[J]. Nano Letters, 7, 2263-2266(2007).

    [64] Piliarik M, Sandoghdar V. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites[J]. Nature Communications, 5, 4495(2014).

    [65] Ortega-Arroyo J, Andrecka J, Spillane K M et al. Label-free, all-optical detection, imaging, and tracking of a single protein[J]. Nano Letters, 14, 2065-2070(2014).

    [66] Liebel M, Hugall J T, van Hulst N F. Ultrasensitive label-free nanosensing and high-speed tracking of single proteins[J]. Nano Letters, 17, 1277-1281(2017).

    [67] Andrecka J, Spillane K M, Ortega-Arroyo J et al. Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy[J]. ACS Nano, 7, 10662-10670(2013).

    [68] de Wit G, Danial J S H, Kukura P et al. Dynamic label-free imaging of lipid nanodomains[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 12299-12303(2015).

    [69] Andrecka J, Ortega-Arroyo J, Lewis K et al. Label-free imaging of microtubules with sub-nm precision using interferometric scattering microscopy[J]. Biophysical Journal, 110, 214-217(2016).

    [70] Mosby L S, Hundt N, Young G et al. Myosin II filament dynamics in actin networks revealed with interferometric scattering microscopy[J]. Biophysical Journal, 118, 1946-1957(2020).

    [71] Park J S, Lee I B, Moon H M et al. Label-free and live cell imaging by interferometric scattering microscopy[J]. Chemical Science, 9, 2690-2697(2018).

    [72] Talà L, Fineberg A, Kukura P et al. Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements[J]. Nature Microbiology, 4, 774-780(2019).

    Yitao Cao, Xue Wang, Xinchao Lu, Chengjun Huang. Label-Free Optical Microscopy Technique and Its Biomedical Applications[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617012
    Download Citation