• Acta Optica Sinica
  • Vol. 41, Issue 1, 0114003 (2021)
Xue Bai and Feng Chen*
Author Affiliations
  • School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
  • show less
    DOI: 10.3788/AOS202141.0114003 Cite this Article Set citation alerts
    Xue Bai, Feng Chen. Recent Advances in Femtosecond Laser-Induced Superhydrophobic Surfaces[J]. Acta Optica Sinica, 2021, 41(1): 0114003 Copy Citation Text show less
    References

    [1] Liu M J, Wang S T, Jiang L. Nature-inspired superwettability systems[J]. Nature Reviews Materials, 2, 17036(2017). http://go.nature.com/2tfGbLG

    [2] Wang S T, Liu K S, Yao X et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chemical Reviews, 115, 8230-8293(2015).

    [3] Yong J L, Chen F, Yang Q et al. Superoleophobic surfaces[J]. Chemical Society Reviews, 46, 4168-4217(2017).

    [4] Wang J N, Liu Y Q, Zhang Y L et al. Wearable superhydrophobic elastomer skin with switchable wettability[J]. Advanced Functional Materials, 28, 1800625(2018).

    [5] Li S H, Page K, Sathasivam S et al. Efficiently texturing hierarchical superhydrophobic fluoride-free translucent films by AACVD with excellent durability and self-cleaning ability[J]. Journal of Materials Chemistry A, 6, 17633-17641(2018).

    [6] Li S H, Huang J Y, Chen Z et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications[J]. Journal of Materials Chemistry A, 5, 31-55(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=58bd4312b6ee563bb79cb08a6672f522

    [7] Das S, Kumar S, Samal S K et al. A review on superhydrophobic polymer nanocoatings: recent development and applications[J]. Industrial & Engineering Chemistry Research, 57, 2727-2745(2018). http://pubs.acs.org/doi/10.1021/acs.iecr.7b04887

    [8] Geyer F, D'Acunzi M, Sharifi-Aghili A et al. 6(3): eaaw9727[J]. how self-cleaning of superhydrophobic surfaces works. Science Advances(2020).

    [9] Dong X L, Gao S W, Huang J Y et al. A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil-water separation ability[J]. Journal of Materials Chemistry A, 7, 2122-2128(2019). http://pubs.rsc.org/en/content/articlelanding/2018/ta/c8ta10869b

    [10] Li Z, Cao M Y, Li P et al. Surface-embedding of functional micro-/nanoparticles for achieving versatile superhydrophobic interfaces[J]. Matter, 1, 661-673(2019). http://www.sciencedirect.com/science/article/pii/S259023851930013X

    [11] Meng J X, Zhang P C, Wang S T. Recent progress of abrasion-resistant materials: learning from nature[J]. Chemical Society Reviews, 45, 237-251(2016).

    [12] Si Y F, Dong Z C, Jiang L. Bioinspired designs of superhydrophobic and superhydrophilic materials[J]. ACS Central Science, 4, 1102-1112(2018). http://www.ncbi.nlm.nih.gov/pubmed/30276243

    [13] Tian X, Verho T. Ras R H A. Moving superhydrophobic surfaces toward real-world applications[J]. Science, 352, 142-143(2016). http://www.ncbi.nlm.nih.gov/pubmed/27124437

    [14] Peng C Y, Chen Z Y, Tiwari M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials, 17, 355-360(2018).

    [15] Hooda A, Goyat M S, Pandey J K et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings[J]. Progress in Organic Coatings, 142, 105557(2020). http://www.sciencedirect.com/science/article/pii/S0300944019314572

    [16] Sahoo B N, Kandasubramanian B. Recent progress in fabrication and characterisation of hierarchical biomimetic superhydrophobic structures[J]. RSC Advances, 4, 22053-22093(2014).

    [17] Sun Y H, Guo Z G. Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature[J]. Nanoscale Horizons, 4, 52-76(2019).

    [18] Chen F, Zhang D S, Yang Q et al. Bioinspired wetting surface via laser microfabrication[J]. ACS Applied Materials & Interfaces, 5, 6777-6792(2013). http://pubs.acs.org/doi/10.1021/am401677z

    [19] Yong J L, Chen F, Yang Q et al. A review of femtosecond-laser-induced underwater superoleophobic surfaces[J]. Advanced Materials Interfaces, 5, 1701370(2018).

    [20] Yong J L, Chen F, Yang Q et al. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 11, 8897-8906(2015). http://pubs.rsc.org/en/content/articlehtml/2015/sm/c5sm02153g

    [21] Wu H, Jiao Y L, Zhang C C et al. Large area metal micro-/nano-groove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography[J]. Nanoscale, 11, 4803-4810(2019). http://www.ncbi.nlm.nih.gov/pubmed/30815658

    [22] Zhu S, Li J, Cai S et al. Unidirectional transport and effective collection of underwater CO2 bubbles utilizing ultrafast-laser-ablated Janus foam[J]. ACS Applied Materials & Interfaces, 12, 18110-18115(2020). http://pubs.acs.org/doi/10.1021/acsami.0c00464

    [23] Lv X, Jiao Y L, Wu S Z et al. Anisotropic sliding of underwater bubbles on microgrooved slippery surfaces by one-step femtosecond laser scanning[J]. ACS Applied Materials & Interfaces, 11, 20574-20580(2019).

    [24] Zhang Y L, Tian Y, Wang H et al. Dual-3D femtosecond laser nanofabrication enables dynamic actuation[J]. ACS Nano, 13, 4041-4048(2019).

    [25] Yong J L, Chen F, Yang Q et al. Bioinspired transparent underwater superoleophobic and anti-oil surfaces[J]. Journal of Materials Chemistry A, 3, 9379-9384(2015).

    [26] Yong J, Singh S C, Zhan Z et al. How to obtain six different superwettabilities on a same microstructured pattern: relationship between various superwettabilities in different solid/liquid/gas systems[J]. Langmuir, 35, 921-927(2019).

    [27] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light: Science & Applications, 7, 17134(2018).

    [28] Zhang D S, Chen F, Yang Q et al. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser[J]. ACS Applied Materials & Interfaces, 4, 4905-4912(2012). http://www.ncbi.nlm.nih.gov/pubmed/22909564/

    [29] Tan D Z, Sharafudeen K N, Yue Y Z et al. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications[J]. Progress in Materials Science, 76, 154-228(2016). http://www.sciencedirect.com/science/article/pii/S0079642515000924

    [30] Yong J L, Yang Q, Chen F et al. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser[J]. Applied Physics A, 111, 243-249(2013). http://link.springer.com/article/10.1007%2Fs00339-013-7572-z/metrics

    [31] Yong J L, Chen F, Li M J et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces[J]. Journal of Materials Chemistry A, 5, 25249-25257(2017).

    [32] Yu S, Guo Z G, Liu W M. Biomimetic transparent and superhydrophobic coatings: from nature and beyond nature[J]. Chemical Communications, 51, 1775-1794(2015).

    [33] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 28, 988-994(1936). http://jxb.oxfordjournals.org/external-ref?access_num=10.1021/ie50320a024&link_type=DOI

    [34] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 40, 546-551(1944). http://jxb.oxfordjournals.org/external-ref?access_num=10.1039/tf9444000546&link_type=DOI

    [35] Baldacchini T, Carey J E, Zhou M et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir, 22, 4917-4919(2006). http://www.ncbi.nlm.nih.gov/pubmed/16700574

    [36] Zorba V, Stratakis E, Barberoglou M et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Advanced Materials, 20, 4049-4054(2008).

    [37] Kietzig A M, Hatzikiriakos S G, Englezos P. Patterned superhydrophobic metallic surfaces[J]. Langmuir, 25, 4821-4827(2009). http://www.ncbi.nlm.nih.gov/pubmed/19267439

    [38] Vorobyev A Y, Guo C L. Multifunctional surfaces produced by femtosecond laser pulses[J]. Journal of Applied Physics, 117, 033103(2015).

    [39] Wu B, Zhou M, Li J et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser[J]. Applied Surface Science, 256, 61-66(2009).

    [40] Long J Y, Fan P X, Gong D W et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal[J]. ACS Applied Materials & Interfaces, 7, 9858-9865(2015). http://www.ncbi.nlm.nih.gov/pubmed/25906058

    [41] Yong J L, Chen F, Yang Q et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability[J]. Chemical Communications, 51, 9813-9816(2015). http://europepmc.org/abstract/MED/25987485

    [42] Yong J L, Chen F, Yang Q et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays[J]. Langmuir, 29, 3274-3279(2013). http://www.ncbi.nlm.nih.gov/pubmed/23391207

    [43] Yong J L, Yang Q, Chen F et al. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion[J]. Applied Surface Science, 288, 579-583(2014). http://www.sciencedirect.com/science/article/pii/S0169433213019351

    [44] Yong J L, Chen F, Yang Q et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion[J]. The Journal of Physical Chemistry C, 117, 24907-24912(2013). http://pubs.acs.org/doi/10.1021/jp408863u

    [45] Yong J L, Yang Q, Chen F et al. Bioinspired superhydrophobic surfaces with directional Adhesion[J]. RSC Advances, 4, 8138-8143(2014). http://www.ingentaconnect.com/content/rsoc/20462069/2014/00000004/00000016/art00034

    [46] Yong J L, Yang Q, Chen F et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces[J]. Journal of Materials Chemistry A, 2, 5499-5507(2014). http://pubs.rsc.org/en/content/articlelanding/ta/2014/c3ta14711h

    [47] Xu Z, Wang L, Yu C M et al. In situ separation of chemical reaction systems based on a special wettable PTFE membrane[J]. Advanced Functional Materials, 28, 1703970(2018). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201703970

    [48] Yong J L, Fang Y, Chen F et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions[J]. Applied Surface Science, 389, 1148-1155(2016).

    [49] Fang Y, Yong J L, Chen F et al. Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications[J]. Applied Physics A, 122, 827(2016).

    [50] Xi M, Yong J L, Chen F et al. A femtosecond laser-induced superhygrophobic surface: beyond superhydrophobicity and repelling various complex liquids[J]. RSC Advances, 9, 6650-6657(2019).

    [51] Zhang F H, Xia Y L, Liu Y J et al. Nano/microstructures of shape memory polymers: from materials to applications[J]. Nanoscale Horizons, 5, 1155-1173(2020). http://pubs.rsc.org/en/content/articlehtml/2020/nh/d0nh00246a

    [52] Gao H, Li J R, Zhang F H et al. The research status and challenges of shape memory polymer-based flexible electronics[J]. Materials Horizons, 6, 931-944(2019). http://pubs.rsc.org/en/content/articlelanding/2019/mh/c8mh01070f/unauth

    [53] Zhao Q, Qi H J, enabling materials[J]. mechanistic understanding. Progress in Polymer Science, 49/50, 79-120(2015).

    [54] Bai X, Yang Q, Fang Y et al. Superhydrophobicity-memory surfaces prepared by a femtosecond laser[J]. Chemical Engineering Journal, 383, 123143(2020). http://www.sciencedirect.com/science/article/pii/S1385894719325550

    [55] Bai X, Yang Q, Fang Y et al. Anisotropic, adhesion-switchable, and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation[J]. Chemical Engineering Journal, 400, 125930(2020). http://www.researchgate.net/publication/342273041_Anisotropic_Adhesion-Switchable_and_Thermal-Responsive_Superhydrophobicity_on_the_Femtosecond_Laser-Structured_Shape-Memory_Polymer_for_Droplet_Manipulation

    [56] Zhou M, Yang H F, Li B J et al. Forming mechanisms and wettability of double-scale structures fabricated by femtosecond laser[J]. Applied Physics A, 94, 571-576(2009). http://link.springer.com/article/10.1007/s00339-008-4920-5

    [57] Ahsan M S, Dewanda F, Lee M S et al. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses[J]. Applied Surface Science, 265, 784-789(2013).

    [58] Lin Y, Han J P, Cai M Y et al. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability[J]. Journal of Materials Chemistry A, 6, 9049-9056(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=5c7bd3f472221b038e28d6705ac2c784

    [59] Chu D K, Singh S C, Yong J L et al. Superamphiphobic surfaces with controllable adhesion fabricated by femtosecond laser Bessel beam on PTFE[J]. Advanced Materials Interfaces, 6, 1900550(2019). http://onlinelibrary.wiley.com/doi/10.1002/admi.201900550

    [60] Li G Q, Fan H, Ren F F et al. Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration[J]. Journal of Materials Chemistry A, 4, 18832-18840(2016). http://d.wanfangdata.com.cn/periodical/7c7c80c117cde4aba340a6a92fe0df12

    [61] Wang A D, Jiang L, Li X W et al. Low-adhesive superhydrophobic surface-enhanced Raman spectroscopy substrate fabricated by femtosecond laser ablation for ultratrace molecular detection[J]. Journal of Materials Chemistry B, 5, 777-784(2017).

    [62] Sarbada S, Shin Y C. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser[J]. Applied Surface Science, 405, 465-475(2017).

    [63] Yong J L, Yang Q, Chen F et al. A bioinspired planar superhydrophobic microboat[J]. Journal of Micromechanics and Microengineering, 24, 035006(2014). http://www.ingentaconnect.com/content/iop/jmm/2014/00000024/00000003/art035006

    [64] Zhan Z B. ElKabbash M, Cheng J L, et al. Highly floatable superhydrophobic metallic assembly for aquatic applications[J]. ACS Applied Materials & Interfaces, 11, 48512-48517(2019).

    Xue Bai, Feng Chen. Recent Advances in Femtosecond Laser-Induced Superhydrophobic Surfaces[J]. Acta Optica Sinica, 2021, 41(1): 0114003
    Download Citation