• Laser & Optoelectronics Progress
  • Vol. 59, Issue 4, 0400001 (2022)
Jianpeng Ao1、2、*, Jing Huang1、2, and Minbiao Ji1、2、3、**
Author Affiliations
  • 1State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
  • 2Human Phenome Institute, Fudan University, Shanghai 200433, China
  • 3Yiwu Research Institute, Fudan University, Yiwu, Zhejiang 322000, China
  • show less
    DOI: 10.3788/LOP202259.0400001 Cite this Article Set citation alerts
    Jianpeng Ao, Jing Huang, Minbiao Ji. Stimulated Raman Scattering Microscopy and Its Applications[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0400001 Copy Citation Text show less
    References

    [1] Duncan M D, Reintjes J, Manuccia T J. Scanning coherent anti-Stokes Raman microscope[J]. Optics Letters, 7, 350-352(1982).

    [2] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering[J]. Physical Review Letters, 82, 4142-4145(1999).

    [3] Evans C L, Xie X S. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine[J]. Annual Review of Analytical Chemistry, 1, 883-909(2008).

    [4] Volkmer A. Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy[J]. Journal of Physics D: Applied Physics, 38, R59-R81(2005).

    [5] Evans C L, Potma E O, Puoris'haag M et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 16807-16812(2005).

    [6] Saar B G, Park H S, Xie X S et al. Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti-Stokes Raman scattering microscopy[J]. Optics Express, 15, 13585-13596(2007).

    [7] Freudiger C W, Min W, Saar B G et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 322, 1857-1861(2008).

    [8] Nandakumar P, Kovalev A, Volkmer A. Vibrational imaging based on stimulated Raman scattering microscopy[J]. New Journal of Physics, 11, 033026(2009).

    [9] Ozeki Y, Dake F, Kajiyama S et al. Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy[J]. Optics Express, 17, 3651-3658(2009).

    [10] Zhang L, Wu Y, Zheng B et al. Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy[J]. Theranostics, 9, 2541-2554(2019).

    [11] Ji M, Arbel M, Zhang L et al. Label-free imaging of amyloid plaques in Alzheimer’s disease with stimulated Raman scattering microscopy[J]. Science Advances, 4, eaat7715(2018).

    [12] Wang M C, Min W, Freudiger C W et al. RNAi screening for fat regulatory genes with SRS microscopy[J]. Nature Methods, 8, 135-138(2011).

    [13] Fu D, Yu Y, Folick A et al. In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy[J]. Journal of the American Chemical Society, 136, 8820-8828(2014).

    [14] Fu D, Yang W L, Xie X S. Label-free imaging of neurotransmitter acetylcholine at neuromuscular junctions with stimulated Raman scattering[J]. Journal of the American Chemical Society, 139, 583-586(2017).

    [15] Yan S, Cui S, Ke K et al. Hyperspectral stimulated Raman scattering microscopy unravels aberrant accumulation of saturated fat in human liver cancer[J]. Analytical Chemistry, 90, 6362-6366(2018).

    [16] Wang P, Liu B, Zhang D et al. Imaging lipid metabolism in live caenorhabditis elegans using fingerprint vibrations[J]. Angewandte Chemie, 53, 11787-11792(2014).

    [17] Ji M B, Orringer D A, Freudiger C W et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy[J]. Science Translational Medicine, 5, 201ra119(2013).

    [18] Tian F, Yang W, Mordes D A et al. Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging[J]. Nature Communications, 7, 13283(2016).

    [19] Chen Z, Paley D W, Wei L et al. Multicolor live-cell chemical imaging by isotopically edited alkyne vibrational palette[J]. Journal of American Chemical Society, 136, 8027-8033(2014).

    [20] Hong S L, Chen T, Zhu Y T et al. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules[J]. Angewandte Chemie International Edition, 53, 5827-5831(2014).

    [21] Zhang L Y, Min W. Bioorthogonal chemical imaging of metabolic changes during epithelial-mesenchymal transition of cancer cells by stimulated Raman scattering microscopy[J]. Journal of Biomedical Optics, 22, 106010(2017).

    [22] Hu F, Wei L, Zheng C et al. Live-cell vibrational imaging of choline metabolites by stimulated Raman scattering coupled with isotope-based metabolic labeling[J]. Analyst, 139, 2312-2317(2014).

    [23] Li S, Chen T, Wang Y et al. Conjugated polymer with intrinsic alkyne units for synergistically enhanced Raman imaging in living cells[J]. Angewandte Chemie, 56, 13455-13458(2017).

    [24] Tian S, Li H, Li Z et al. Polydiacetylene-based ultrastrong bioorthogonal Raman probes for targeted live-cell Raman imaging[J]. Nature Communications, 11, 81(2020).

    [25] Yamakoshi H, Dodo K, Okada M et al. Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy[J]. Journal of the American Chemical Society, 133, 6102-6105(2011).

    [26] Yamakoshi H, Dodo K, Palonpon A et al. Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells[J]. Journal of the American Chemical Society, 134, 20681-20689(2012).

    [27] Wei L, Hu F, Shen Y et al. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering[J]. Nature Methods, 11, 410-412(2014).

    [28] Shen Y, Zhao Z, Zhang L et al. Metabolic activity induces membrane phase separation in endoplasmic reticulum[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 13394-13399(2017).

    [29] Hu F, Zeng C, Long R et al. Supermultiplexed optical imaging and barcoding with engineered polyynes[J]. Nature Methods, 15, 194-200(2018).

    [30] Wei L, Chen Z, Shi L et al. Super-multiplex vibrational imaging[J]. Nature, 544, 465-470(2017).

    [31] Qi Y F, Liu Y H, Liu D M. Research progress on application of Raman spectroscopy in tumor diagnosis[J]. Laser & Optoelectronics Progress, 57, 220001(2020).

    [32] Tuschel D. Exploring resonance Raman spectroscopy[J]. Spectroscopy, 33, 9-12(2018).

    [33] Stiles P L, Dieringer J A, Shah N C et al. Surface-enhanced Raman spectroscopy[J]. Annual Review of Analytical Chemistry, 1, 601-626(2008).

    [34] Saar B G, Freudiger C W, Reichman J et al. Video-rate molecular imaging in vivo with stimulated Raman scattering[J]. Science, 330, 1368-1370(2010).

    [35] Fu D, Holtom G, Freudiger C et al. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers[J]. The Journal of Physical Chemistry B, 117, 4634-4640(2013).

    [36] Kong L J, Ji M B, Holtom G R et al. Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator[J]. Optics Letters, 38, 145-147(2013).

    [37] Ozeki Y, Umemura W, Otsuka Y et al. High-speed molecular spectral imaging of tissue with stimulated Raman scattering[J]. Nature Photonics, 6, 845-851(2012).

    [38] Liao C S, Wang P, Wang P et al. Spectrometer-free vibrational imaging by retrieving stimulated Raman signal from highly scattered photons[J]. Science Advances, 1, e1500738(2015).

    [39] Liao C S, Slipchenko M N, Wang P et al. Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy[J]. Light: Science & Applications, 4, e265(2015).

    [40] Seto K, Okuda Y, Tokunaga E et al. Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection[J]. The Review of Scientific Instruments, 84, 083705(2013).

    [41] Fu D, Lu F K, Zhang X et al. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy[J]. Journal of the American Chemical Society, 134, 3623-3626(2012).

    [42] He R Y, Xu Y K, Zhang L L et al. Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging[J]. Optica, 4, 44-47(2016).

    [43] Zhang B, Sun M, Yang Y et al. Rapid, large-scale stimulated Raman histology with strip mosaicing and dual-phase detection[J]. Biomedical Optics Express, 9, 2604-2613(2018).

    [44] Min W, Freudiger C W, Lu S J et al. Coherent nonlinear optical imaging: beyond fluorescence microscopy[J]. Annual Review of Physical Chemistry, 62, 507-530(2011).

    [45] Asher S A. UV resonance Raman studies of molecular structure and dynamics: applications in physical and biophysical chemistry[J]. Annual Review of Physical Chemistry, 39, 537-588(1988).

    [46] Wei L, Min W. Electronic preresonance stimulated Raman scattering microscopy[J]. The Journal of Physical Chemistry Letters, 9, 4294-4301(2018).

    [47] Shen Y, Hu F, Min W. Raman Imaging of small biomolecules[J]. Annual Review of Biophysics, 48, 347-369(2019).

    [48] Xiong H, Qian N, Miao Y et al. Stimulated Raman excited fluorescence spectroscopy of visible dyes[J]. The Journal of Physical Chemistry Letters, 10, 3563-3570(2019).

    [49] Xiong H, Shi L, Wei L et al. Stimulated Raman excited fluorescence spectroscopy and imaging[J]. Nature Photonics, 13, 412-417(2019).

    [50] Zong C, Premasiri R, Lin H et al. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity[J]. Nature Communications, 10, 5318(2019).

    [51] Bi Y, Yang C, Chen Y et al. Near-resonance enhanced label-free stimulated Raman scattering microscopy with spatial resolution near 130 nm[J]. Light, Science & Applications, 7, 81(2018).

    [52] Prince R C, Frontiera R R, Potma E O. Stimulated Raman scattering: from bulk to nano[J]. Chemical Reviews, 117, 5070-5094(2017).

    [53] Kim D, Choi D S, Kwon J et al. Selective suppression of stimulated Raman scattering with another competing stimulated Raman scattering[J]. The Journal of Physical Chemistry Letters, 8, 6118-6123(2017).

    [54] Silva W R, Graefe C T, Frontiera R R. Toward label-free super-resolution microscopy[J]. ACS Photonics, 3, 79-86(2016).

    [55] Gong L, Wang H F. Suppression of stimulated Raman scattering by an electromagnetically-induced-transparency-like scheme and its application for super-resolution microscopy[J]. Physical Review A, 92, 023828(2015).

    [56] Gong L, Wang H F. Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: a theoretical study[J]. Physical Review A, 90, 013818(2014).

    [57] Gong L, Zheng W, Ma Y et al. Saturated stimulated-Raman-scattering microscopy for far-field superresolution vibrational imaging[J]. Physical Review Applied, 11, 034041(2019).

    [58] Xiong H Q, Qian N, Zhao Z et al. Background-free imaging of chemical bonds by a simple and robust frequency-modulated stimulated Raman scattering microscopy[J]. Optics Express, 28, 15663-15677(2020).

    [59] Xiong H Q, Qian N, Miao Y et al. Super-resolution vibrational microscopy by stimulated Raman excited fluorescence[J]. Light, Science & Applications, 10, 87(2021).

    [60] Ao J, Fang X, Miao X et al. Switchable stimulated Raman scattering microscopy with photochromic vibrational probes[J]. Nature Communications, 12, 3089(2021).

    [61] Lee D, Qian C, Wang H et al. Toward photoswitchable electronic pre-resonance stimulated Raman probes[J]. The Journal of Chemical Physics, 154, 135102(2021).

    [62] Shou J W, Ozeki Y. Photoswitchable stimulated Raman scattering spectroscopy and microscopy[J]. Optics Letters, 46, 2176-2179(2021).

    [63] Lu F K, Basu S, Igras V et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 11624-11629(2015).

    [64] Zhang X, Roeffaers M B, Basu S et al. Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy[J]. Chemphyschem, 13, 1054-1059(2012).

    [65] Wei L, Shen Y, Xu F et al. Imaging complex protein metabolism in live organisms by stimulated Raman scattering microscopy with isotope labeling[J]. ACS Chemical Biology, 10, 901-908(2015).

    [66] Wei L, Yu Y, Shen Y et al. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 11226-11231(2013).

    [67] Shen Y H, Xu F, Wei L et al. Live-cell quantitative imaging of proteome degradation by stimulated Raman scattering[J]. Angewandte Chemie International Edition, 53, 5596-5599(2014).

    [68] Hu F, Chen Z, Zhang L et al. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering[J]. Angewandte Chemie-International Edition, 54, 9821-9825(2015).

    [69] Long R, Zhang L, Shi L et al. Two-color vibrational imaging of glucose metabolism using stimulated Raman scattering[J]. Chemical Communications, 54, 152-155(2018).

    [70] Zhang L, Shi L, Shen Y et al. Spectral tracing of deuterium for imaging glucose metabolism[J]. Nature Biomedical Engineering, 3, 402-413(2019).

    [71] Li Z L, Li S W, Zhang S L et al. Coherent Raman scattering microscopy technique and its biomedical applications[J]. Chinese Journal of Lasers, 47, 0207005(2020).

    [72] Zhang B H, Guo L, Yao L et al. Rapid histological imaging using stimulated Raman scattering microscopy[J]. Chinese Journal of Lasers, 47, 0207018(2020).

    [73] Bentley J N, Ji M B, Xie X S et al. Real-time image guidance for brain tumor surgery through stimulated Raman scattering microscopy[J]. Expert Review of Anticancer Therapy, 14, 359-361(2014).

    [74] Ji M, Lewis S, Camelo-Piragua S et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy[J]. Science Translational Medicine, 7, aab0195(2015).

    [75] Yang Y F, Chen L C, Ji M B. Stimulated Raman scattering microscopy for rapid brain tumor histology[J]. Journal of Innovative Optical Health Sciences, 10, 1730010(2017).

    [76] Hollon T C, Pandian B, Adapa A R et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks[J]. Nature Medicine, 26, 52-58(2020).

    [77] Orringer D A, Pandian B, Niknafs Y S et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy[J]. Nature Biomedical Engineering, 1, 0027(2017).

    [78] Yue S H, Li J J, Lee S Y et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness[J]. Cell Metabolism, 19, 393-406(2014).

    [79] Zhang B, Xu H, Chen J et al. Highly specific and label-free histological identification of microcrystals in fresh human gout tissues with stimulated Raman scattering[J]. Theranostics, 11, 3074-3088(2021).

    [80] Shin K S, Laohajaratsang M, Men S Q et al. Quantitative chemical imaging of breast calcifications in association with neoplastic processes[J]. Theranostics, 10, 5865-5878(2020).

    [81] Yang Y, Yang Y, Liu Z et al. Microcalcification-based tumor malignancy evaluation in fresh breast biopsies with hyperspectral stimulated Raman scattering[J]. Analytical Chemistry, 93, 6223-6231(2021).

    [82] Lee H J, Jiang Y, Cheng J X. Label-free optical imaging of membrane potential[J]. Current Opinion in Biomedical Engineering, 12, 118-125(2019).

    [83] Lee H J, Zhang D L, Jiang Y et al. Label-free vibrational spectroscopic imaging of neuronal membrane potential[J]. The Journal of Physical Chemistry Letters, 8, 1932-1936(2017).

    [84] Miao K, Wei L. Live-cell imaging and quantification of PolyQ aggregates by stimulated Raman scattering of selective deuterium labeling[J]. ACS Central Science, 6, 478-486(2020).

    [85] Wakisaka Y, Suzuki Y, Iwata O et al. Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy[J]. Nature Microbiology, 1, 16124(2016).

    [86] Hong W L, Karanja C W, Abutaleb N S et al. Antibiotic susceptibility determination within one cell cycle at single-bacterium level by stimulated Raman metabolic imaging[J]. Analytical Chemistry, 90, 3737-3743(2018).

    [87] Zhang M, Hong W, Abutaleb N S et al. Rapid determination of antimicrobial susceptibility by stimulated Raman scattering imaging of D2O metabolic incorporation in a single bacterium[J]. Advanced Science, 7, 2001452(2020).

    [88] Tipping W J, Lee M, Serrels A et al. Stimulated Raman scattering microscopy: an emerging tool for drug discovery[J]. Chemical Society Reviews, 45, 2075-2089(2016).

    [89] Slipchenko M N, Chen H T, Ely D R et al. Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy[J]. The Analyst, 135, 2613-2619(2010).

    [90] Francis A, Nguyen T T, Lamm M S et al. In situ stimulated Raman scattering (SRS) microscopy study of the dissolution of sustained-release implant formulation[J]. Molecular Pharmaceutics, 15, 5793-5801(2018).

    [91] Fu D, Zhou J, Zhu W S et al. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering[J]. Nature Chemistry, 6, 614-622(2014).

    [92] Tipping W J, Lee M, Serrels A et al. Imaging drug uptake by bioorthogonal stimulated Raman scattering microscopy[J]. Chemical Science, 8, 5606-5615(2017).

    [93] Seidel J, Miao Y P, Porterfield W et al. Structure-activity-distribution relationship study of anti-cancer antimycin-type depsipeptides[J]. Chemical Communications, 55, 9379-9382(2019).

    [94] Gaschler M M, Hu F, Feng H et al. Determination of the subcellular localization and mechanism of action of ferrostatins in suppressing ferroptosis[J]. ACS Chemical Biology, 13, 1013-1020(2018).

    [95] Cheng Q, Wei L, Liu Z et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy[J]. Nature Communications, 9, 2942(2018).

    [96] Ling J, Miao X, Sun Y et al. Vibrational imaging and quantification of two-dimensional hexagonal boron nitride with stimulated Raman scattering[J]. ACS Nano, 13, 14033-14040(2019).

    [97] Ao J P, Feng Y Q, Wu S M et al. Rapid, 3D chemical profiling of individual atmospheric aerosols with stimulated Raman scattering microscopy[J]. Small Methods, 4, 1900600(2020).

    [98] Li H Z, Cheng Y, Tang H J et al. Imaging chemical kinetics of radical polymerization with an ultrafast coherent Raman microscope[J]. Advanced Science, 7, 1903644(2020).

    [99] Zada L, Leslie H A, Vethaak A D et al. Fast microplastics identification with stimulated Raman scattering microscopy[J]. Journal of Raman Spectroscopy, 49, 1136-1144(2018).

    [100] Houle M A, Burruss R C, Ridsdale A et al. Rapid 3D chemical-specific imaging of minerals using stimulated Raman scattering microscopy[J]. Journal of Raman Spectroscopy, 48, 726-735(2017).

    [101] Qi J, Li J, Liu R H et al. Boosting fluorescence-photoacoustic-Raman properties in one fluorophore for precise cancer surgery[J]. Chem, 5, 2657-2677(2019).

    [102] Nitta N, Iino T, Isozaki A et al. Raman image-activated cell sorting[J]. Nature Communications, 11, 3452(2020).

    [103] Suzuki Y, Kobayashi K, Wakisaka Y et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 15842-15848(2019).

    [104] Hiramatsu K, Ideguchi T, Yonamine Y et al. High-throughput label-free molecular fingerprinting flow cytometry[J]. Science Advances, 5, eaau0241(2019).

    [105] Liao C S, Wang P, Huang C Y et al. In vivo and in situ spectroscopic imaging by a handheld stimulated Raman scattering microscope[J]. ACS Photonics, 5, 947-954(2018).

    [106] Miao Y, Qian N, Shi L et al. 9-cyanopyronin probe palette for super-multiplexed vibrational imaging[J]. Nature Communications, 12, 4518(2021).

    [107] Hu F H, Brucks S D, Lambert T H et al. Stimulated Raman scattering of polymer nanoparticles for multiplexed live-cell imaging[J]. Chemical Communications, 53, 6187-6190(2017).

    [108] Hu F, Shi L, Min W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy[J]. Nature Methods, 16, 830-842(2019).

    [109] Miao Y, Shi L, Hu F et al. Probe design for super-multiplexed vibrational imaging[J]. Physical Biology, 16, 041003(2019).

    [110] Zeng C, Hu F H, Long R et al. A ratiometric Raman probe for live-cell imaging of hydrogen sulfide in mitochondria by stimulated Raman scattering[J]. The Analyst, 143, 4844-4848(2018).

    [111] Li X, Jiang M, Lam J W Y et al. Mitochondrial imaging with combined fluorescence and stimulated Raman scattering microscopy using a probe of the aggregation-induced emission characteristic[J]. Journal of the American Chemical Society, 139, 17022-17030(2017).

    [112] Wilson L T, Tipping W J, Jamieson L E et al. A new class of ratiometric small molecule intracellular pH sensors for Raman microscopy[J]. The Analyst, 145, 5289-5298(2020).

    [113] Fujioka H, Shou J W, Kojima R et al. Multicolor activatable Raman probes for simultaneous detection of plural enzyme activities[J]. Journal of the American Chemical Society, 142, 20701-20707(2020).

    [114] Wilson L T, Tipping W J, Wetherill C et al. Mitokyne: a ratiometric Raman probe for mitochondrial pH[J]. Analytical Chemistry, 93, 12786-12792(2021).

    [115] Zhang J, Yan S, He Z et al. Small unnatural amino acid carried Raman tag for molecular imaging of genetically targeted proteins[J]. The Journal of Physical Chemistry Letters, 9, 4679-4685(2018).

    [116] Manifold B, Thomas E, Francis A T et al. Denoising of stimulated Raman scattering microscopy images via deep learning[J]. Biomedical Optics Express, 10, 3860-3874(2019).

    [117] Zhang J, Zhao J, Lin H N et al. High-speed chemical imaging by dense-net learning of femtosecond stimulated Raman scattering[J]. The Journal of Physical Chemistry Letters, 11, 8573-8578(2020).

    Jianpeng Ao, Jing Huang, Minbiao Ji. Stimulated Raman Scattering Microscopy and Its Applications[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0400001
    Download Citation