• Laser & Optoelectronics Progress
  • Vol. 57, Issue 19, 192602 (2020)
Fuping Peng1、2, Wei Yan1、*, Fanxing Li1、2, Simo Wang1、2, Jialin Du1、2, and Jing Du1
Author Affiliations
  • 1State Key Laboratory of Optical Technologies for Microfabrication, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP57.192602 Cite this Article Set citation alerts
    Fuping Peng, Wei Yan, Fanxing Li, Simo Wang, Jialin Du, Jing Du. Four-Beam Interferometric Light Field Based on Asymmetric Incidence and Polarization Modulation[J]. Laser & Optoelectronics Progress, 2020, 57(19): 192602 Copy Citation Text show less
    References

    [1] Burrow G M, Gaylord T K. Multi-beam interference advances and applications: nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures[J]. Micromachines, 2, 221-257(2011). http://www.oalib.com/paper/159558

    [2] Wang L, Wang Z H, Yu Y H et al. Laser interference fabrication of large-area functional periodic structure surface[J]. Frontiers of Mechanical Engineering, 13, 493-503(2018).

    [3] Hutton D M. Silicon earth: introduction to the microelectronics and nanotechnology revolution[J]. Kybernetes, 40, 934-936(2011).

    [4] Chen A, Chua S J, Chen P et al. Fabrication of sub-100 nm patterns in SiO2 templates by electron-beam lithography for the growth of periodic III-V semiconductor nanostructures[J]. Nanotechnology, 17, 3903-3908(2006).

    [5] Xu X S, Chen H D, Xiong Z G et al. Fabrication of photonic crystals on several kinds of semiconductor materials by using focused-ion beam method[J]. Thin Solid Films, 515, 8297-8300(2007).

    [6] Xia D Y, Ku Z, Lee S C et al. Nanostructures and functional materials fabricated by interferometric lithography[J]. Advanced Materials (Deerfield Beach, Fla.), 23, 147-179(2011).

    [7] Vala M, Homola J. Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays[J]. Optics Express, 22, 18778-18789(2014).

    [8] Wang K, Jin Y, Liu Y W et al. Preparation and characterization of multi-morphological and multi-periodical micro-nano composite structures[J]. Laser & Optoelectronics Progress, 56, 120501(2019).

    [9] Zhang W, Liu W P, Gu X Y et al. Multi-beam laser interference lithography pattern[J]. High Power Laser and Particle Beams, 23, 3157-3162(2011).

    [10] Lutkenhaus J, George D, Garrett D et al. Holographic formation of compound photonic crystal and nano-antenna templates through laser interference[J]. Journal of Applied Physics, 113, 103103(2013).

    [11] Sakakura M, Sawano T, Shimotsuma Y et al. Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam[J]. Optics Express, 18, 12136-12143(2010).

    [12] Yuan L L, Herman P R. Laser scanning holographic lithography for flexible 3D fabrication of multi-scale integrated nano-structures and optical biosensors[J]. Scientific Reports, 6, 22294(2016).

    [13] Zhao L, Wang Z, Zhang J et al. Antireflection silicon structures with hydrophobic property fabricated by three-beam laser interference[J]. Applied Surface Science, 346, 574-579(2015).

    [14] Yan Y W, An J M, Zhang J S et al. Chip of phase control arrays based on silica on silicon[J]. Acta Photonica Sinica, 48, 0423001(2019).

    [15] Kumar M, Joseph J. Digitally reconfigurable complex two-dimensional dual-lattice structure by optical phase engineering[J]. Applied Optics, 53, 1333-1338(2014).

    [16] Lutkenhaus J, George D, Moazzezi M et al. Digitally tunable holographic lithography using a spatial light modulator as a programmable phase mask[J]. Optics Express, 21, 26227-26235(2013).

    [17] Hassan S, Sale O, Lowell D et al. Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell[J]. Photonics, 5, 34(2018).

    [18] Behera S, Kumar M, Joseph J. Submicrometer photonic structure fabrication by phase spatial-light-modulator-based interference lithography[J]. Optics Letters, 41, 1893-1896(2016).

    [19] Wu X. Influence of interference deviation on four-beam interference with circular polarization[J]. Laser & Optoelectronics Progress, 55, 061405(2018).

    [20] Ma L N, Zhang J, Jiang S L et al. Influence on patterns quality of multi-beam interference lithography caused by the deviations of incidence azimuth angle and intensity of light[J]. Acta Photonica Sinica, 44, 1011003(2015).

    [21] Voisiat B, Zwahr C, Lasagni A F. Growth of regular micro-pillar arrays on steel by polarization-controlled laser interference patterning[J]. Applied Surface Science, 471, 1065-1071(2019).

    [22] Hu Y W, Wang Z B, Weng Z K et al. Bio-inspired hierarchical patterning of silicon by laser interference lithography[J]. Applied Optics, 55, 3226-3232(2016).

    [23] Xu J, Wang Z B, Zhang Z A et al. Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography[J]. Journal of Applied Physics, 115, 203101(2014).

    Fuping Peng, Wei Yan, Fanxing Li, Simo Wang, Jialin Du, Jing Du. Four-Beam Interferometric Light Field Based on Asymmetric Incidence and Polarization Modulation[J]. Laser & Optoelectronics Progress, 2020, 57(19): 192602
    Download Citation