• Laser & Optoelectronics Progress
  • Vol. 57, Issue 19, 192602 (2020)
Fuping Peng1、2, Wei Yan1、*, Fanxing Li1、2, Simo Wang1、2, Jialin Du1、2, and Jing Du1
Author Affiliations
  • 1State Key Laboratory of Optical Technologies for Microfabrication, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP57.192602 Cite this Article Set citation alerts
    Fuping Peng, Wei Yan, Fanxing Li, Simo Wang, Jialin Du, Jing Du. Four-Beam Interferometric Light Field Based on Asymmetric Incidence and Polarization Modulation[J]. Laser & Optoelectronics Progress, 2020, 57(19): 192602 Copy Citation Text show less
    Schematic diagram of four-beam interference
    Fig. 1. Schematic diagram of four-beam interference
    Asymmetric incidence pattern of four-beam. (a) Change the incidence angle; (b) change the azimuth angle;(c)--(d) change the incident angle and azimuth at the same time
    Fig. 2. Asymmetric incidence pattern of four-beam. (a) Change the incidence angle; (b) change the azimuth angle;(c)--(d) change the incident angle and azimuth at the same time
    Interference light field obtained at different incident angles of beam1. (a) θ1=25°; (b) θ1=35°; (c) θ1=40°; (d) θ1=45°
    Fig. 3. Interference light field obtained at different incident angles of beam1. (a) θ1=25°; (b) θ1=35°; (c) θ1=40°; (d) θ1=45°
    Interference light field obtained at different azimuth angle of the beam1. (a) α1=π/6; (b) α1=5π/12; (c) α1=π/2; (d) α1=π
    Fig. 4. Interference light field obtained at different azimuth angle of the beam1. (a) α1=π/6; (b) α1=5π/12; (c) α1=π/2; (d) α1
    Influence of polarization on the interference light field in asymmetric incidence. (a) Ribbon quadrilateral lattice; (b) elliptical lattice; (c) maximum light intensity lattice of the ribbon hexagon; (d) minimum light intensity lattice of the ribbon hexagon
    Fig. 5. Influence of polarization on the interference light field in asymmetric incidence. (a) Ribbon quadrilateral lattice; (b) elliptical lattice; (c) maximum light intensity lattice of the ribbon hexagon; (d) minimum light intensity lattice of the ribbon hexagon
    Beam parameterAzimuth angle /radPolarization angle /rad
    αφ=0(s-wave)φ=π/2(p-wave)
    Polarization vector0(0,1,0)(cos θ,0,sin θ)
    π/2(-1,0,0)(0,cos θ,-sin θ)
    π(0,-1,0)(-cos θ,0,-sin θ)
    3π/2(1,0,0)(0,-cos θ,-sin θ)
    π/3(-3/2,1/2,0)(1/2cos θ,3/2cos θ,-sin θ)
    2π/3(-3/2,-1/2,0)(-1/2cos θ,3/2cos θ,-sin θ)
    4π/3(3/2,-1/2,0)(1/2cos θ,-3/2cos θ,-sin θ)
    Table 1. Polarization vector corresponding to s-wave and p-wave under different azimuth angles
    Fuping Peng, Wei Yan, Fanxing Li, Simo Wang, Jialin Du, Jing Du. Four-Beam Interferometric Light Field Based on Asymmetric Incidence and Polarization Modulation[J]. Laser & Optoelectronics Progress, 2020, 57(19): 192602
    Download Citation