• Journal of Semiconductors
  • Vol. 43, Issue 5, 050501 (2022)
Ke Jin1, Zongliang Ou2, Lixiu Zhang1, Yongbo Yuan4..., Zuo Xiao1, Qiuling Song2, Chenyi Yi3 and Liming Ding1|Show fewer author(s)
Author Affiliations
  • 1Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
  • 2College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
  • 3State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
  • 4School of Physics and Electronics, Central South University, Changsha 410083, China
  • show less
    DOI: 10.1088/1674-4926/43/5/050501 Cite this Article
    Ke Jin, Zongliang Ou, Lixiu Zhang, Yongbo Yuan, Zuo Xiao, Qiuling Song, Chenyi Yi, Liming Ding. A chlorinated lactone polymer donor featuring high performance and low cost[J]. Journal of Semiconductors, 2022, 43(5): 050501 Copy Citation Text show less
    References

    [1] Y Tong, Z Xiao, X Du et al. Progress of the key materials for organic solar cells. Sci China Chem, 63, 758(2020).

    [2] A Armin, W Li, O J Sandberg et al. A history and perspective of non-fullerene electron acceptors for organic solar cells. Adv Energy Mater, 11, 20003570(2021).

    [3] Z Xiao, S Yang, Z Yang et al. Carbon-oxygen-bridged ladder-type building blocks for highly efficient nonfullerene acceptors. Adv Mater, 31, 1804790(2018).

    [4] Z Xiao, X Jia, L Ding. Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull, 62, 1562(2017).

    [5] L Liu, Q Liu, Z Xiao et al. Induced J-aggregation in acceptor alloy enhances photocurrent. Sci Bull, 64, 1083(2019).

    [6] H Li, Z Xiao, L Ding et al. Thermostable single-junction organic solar cells with a power conversion efficiency of 14.62%. Sci Bull, 63, 340(2018).

    [7] B Liu, Y Xu, D Xia et al. Semitransparent organic solar cells based on non-fullerene electron acceptors. Acta Phys Chim Sin, 37, 2009056(2021).

    [8] J Yuan, Y Zhang, L Zhou et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 3, 1140(2019).

    [9] Y Cui, H Yao, J Zhang et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv Mater, 32, 1908205(2020).

    [10] C Li, J Zhou, J Song et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat Energy, 6, 605(2021).

    [11] T Wang, J Qin, Z Xiao et al. A 2.16 eV bandgap polymer donor gives 16% power conversion efficiency. Sci Bull, 65, 179(2020).

    [12] T Wang, J Qin, Z Xiao et al. Mutiple conformation locks gift polymer donor high efficiency. Nano Energy, 77, 105161(2020).

    [13] C Sun, F Pan, H Bin et al. A low cost and high performance polymer donor material for polymer solar cells. Nat Commun, 9, 743(2018).

    [14] Q Liu, Y Jiang, K Jin et al. 18% Efficiency organic solar cells. Sci Bull, 65, 272(2020).

    [15] K Jin, Z Xiao, L Ding. D18, an eximious solar polymer!. J Semicond, 42, 010502(2021).

    [16] K Jin, Z Xiao, L Ding. 18.69% PCE from organic solar cells. J Semicond, 42, 060502(2021).

    [17] Y Cui, Y Xu, H Yao et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater, 33, 2102420(2021).

    [18] Y Cai, L Huo, Y Sun. Recent adcances in wide-bandgap photovoltaic polymers. Adv Mater, 29, 1605437(2017).

    [19] B Fan, D Zhang, M Li et al. Achieving over 16% efficiency for single-junction organic solar cells. Sci China Chem, 62, 746(2019).

    [20] J Liu, L Liu, C Zuo et al. 5H-dithieno[3,2-b:2',3'-d]pyran-5-one unit yields efficient wide-bandgap polymer donors. Sci Bull, 64, 1655(2019).

    [21] J Xiong, K Jin, Y Jiang et al. Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Sci Bull, 64, 1573(2019).

    [22] Y Jiang, K Jin, X Chen et al. Post-sulphuration enhances the performance of a lactone polymer donor. J Semicond, 42, 070501(2021).

    [23] J Qin, L Zhang, C Zuo et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 42, 010501(2021).

    [24] C Zhu, L Meng, J Zhang et al. A quinoxaline-based D-A copolymer donor achieving 17.62% efficiency of organic solar cells. Adv Mater, 33, 2100474(2021).

    [25] Y Xu, Y Cui, H Yao et al. A new conjugated polymer that enables the integration of photovoltaic and light-emitting functions in one device. Adv Mater, 33, 2101090(2021).

    [26] X Meng, K Jin, Z Xiao et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 42, 100501(2021).

    [27] P Bi, S Zhang, Z Chen et al. Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule, 5, 2408(2021).

    [28] R Xue, J Zhang, Y Li et al. Organic solar cell materials toward commercialization. Small, 14, 1801793(2018).

    [29] J Xu, A Sun, Z Xiao et al. Efficient wide-bandgap copolymer donors with reduced synthesis cost. J Mater Chem C, 9, 16187(2021).

    [30] X Qin, X Li, Q Huang et al. Rhodium(III)-catalyzed ortho C-H heteroarylation of (hetero)aromatic carboxylic acids: a rapid and concise access to π-conjugated poly-heterocycles. Angew Chem Int Ed, 54, 7167(2015).

    [31] Z Ou, J Qin, K Jin et al. Engineering of the alkyl chain branching point on a lactone polymer donor yields 17.81% efficiency. J Mater Chem A, 10, 3314(2022).

    [32] H Yao, J Wang, Y Xu et al. Recent progress in chlorinated organic photovoltaic materials. Acc Chem Res, 53, 822(2020).

    [33] K Jiang, Q Wei, J Y L Lai et al. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule, 3, 3020(2019).

    [34] Z Xiao, F Liu, X Geng et al. A carbon-oxygen-bridged ladder-type building block for efficient donor and acceptor materials used in organic solar cells. Sci Bull, 62, 1331(2017).

    [35] Z Xiao, X Jia, D Li et al. 26 mA cm–2Jsc from organic solar cells with a low-bandgap nonfullerene acceptor. Sci Bull, 62, 494(2017).

    [36] Z Xiao, X Geng, D He et al. Development of isomer-free fullerene bisadducts for efficient polymer solar cells. Sci Bull, 9, 2114(2016).

    [37] D Li, Z Xiao, S Wang et al. A thieno[3,2-c]isoquinolin-5(4H)-one building block for efficient thick-film solar cells. Adv Energy Mater, 8, 1800397(2018).

    [38] Y Gao, D Li, Z Xiao et al. High-performance wide-bandgap copolymers with dithieno[3,2-b:2',3'-d]pyridin-5(4H)-one units. Mater Chem Front, 3, 399(2019).

    [39] T Li, H Zhang, Z Xiao et al. A carbon-oxygen-bridged hexacyclic ladder-type building block for low-bandgap nonfullerene acceptors. Mater Chem Front, 2, 700(2018).

    [40] K Jin, C Deng, L Zhang et al. A heptacyclic carbon-oxygem-bridged ladder-type building for A-D-A acceptors. Mater Chem Front, 2, 1716(2018).

    [41] J Qin, L Zhang, Z Xiao et al. Over 16% efficiency from thick-film organic solar cells. Sci Bull, 65, 1979(2020).

    [42] M An, F Xie, X Geng et al. A high-performance D-A copolymer based on dithieno[3,2-b:2',3'-d]pyridin-5(4H)-one unit compatible with fullerene and nonfullerene acceptors in solar cells. Adv Energy Mater, 7, 1602509(2017).

    Ke Jin, Zongliang Ou, Lixiu Zhang, Yongbo Yuan, Zuo Xiao, Qiuling Song, Chenyi Yi, Liming Ding. A chlorinated lactone polymer donor featuring high performance and low cost[J]. Journal of Semiconductors, 2022, 43(5): 050501
    Download Citation