• Laser & Optoelectronics Progress
  • Vol. 56, Issue 5, 051403 (2019)
Xizheng Ke and Kena Han*
Author Affiliations
  • School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
  • show less
    DOI: 10.3788/LOP56.051403 Cite this Article Set citation alerts
    Xizheng Ke, Kena Han. Wavefront Simulation and Wavefront Correction of Liquid Crystal Spatial Light Modulator[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051403 Copy Citation Text show less
    References

    [1] Restaino R, Andrews R, Martinez T et al. Adaptive optics using MEMS and liquid crystal devices[J]. Journal of Optics A: Pure and Applied Optics, 10, 064006(2008). http://adsabs.harvard.edu/abs/2008JOptA..10f4006R

    [2] Farrell T C. Fast simulation of Strehl loss due to phase aberration for the sizing of adaptive optics in laser communications system design[J]. Applied Optics, 53, 64-70(2014). http://europepmc.org/abstract/med/24513990

    [3] Jiang W H. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 45, 170489(2018).

    [4] Cheng T, Liu W J, Yang K J et al. Decoupling control algorithm based on Laplacian eigenfunction for Woofer-Tweeter adaptive optics system[J]. Chinese Journal of Lasers, 45, 0905003(2018).

    [5] Dou R S, Giles M K. Closed-loop adaptive-optics system with a liquid-crystal television as a phase retarder[J]. Optics Letters, 20, 1583-1585(1995). http://www.ncbi.nlm.nih.gov/pubmed/19862090

    [6] Kirsch J C. Modulation characteristics of the Epson liquid crystal television[J]. Optical Engineering, 31, 963-970(1992). http://spie.org/Publications/Journal/10.1117/12.56170

    [7] Yao K N, Wang J L, Liu X Y et al. Closed-loop adaptive optics system with a single liquid crystal spatial light modulator[J]. Optics Express, 22, 17216-17226(2014). http://europepmc.org/abstract/MED/25090535

    [8] Zhang H X, Zhang J, Qiao Y J et al. Wavefront generation and error compensation of liquid crystal spatial light modulator[J]. Journal of Optoelectronics·Laser, 24, 838-842(2013).

    [9] Jiang W H. Adapted optical technology[J]. Chinese Journal of Nature, 28, 7-13(2006).

    [10] Hu L F, Xuan L, Liu Y J et al. Phase-only liquid crystal spatial light modulator for wavefront correction with high precision[J]. Optics Express, 12, 6403-6409(2004). http://www.opticsinfobase.org/abstract.cfm?id=83596

    [11] McKnight D J, Johnson K M, Serati R A. 256×256 liquid-crystal-on-silicon spatial light modulator[J]. Applied Optics, 33, 2775-2784(1994). http://www.ncbi.nlm.nih.gov/pubmed/20885636

    [12] McGlamery B L. Restoration of turbulence-degraded images[J]. Journal of the Optical Society of America, 57, 293-297(1967). http://www.opticsinfobase.org/josa/abstract.cfm?id=75481

    [13] Zhang H X. Study on testing method of phase liquid crystal spatial light modulator and wavefront correction[D]. Harbin: Harbin Institute of Technology, 18-22(2009).

    [14] Li X Z, Han C S, Wen M et al. Research on wavefront distortion compensation based on liquid crystal space light modulator[J]. Laser & Infrared, 41, 187-191(2011).

    [15] Jin D H. Research on wavefront correction based on stochastic parallel gradient descent algorithm[D]. Changsha: University of National Defense Science and Technology, 3-4(2006).

    [16] Vorontsov M A, Carhart G W, Cohen M et al. Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration[J]. Journal of the Optical Society of America A, 17, 1440-1453(2000). http://www.ncbi.nlm.nih.gov/pubmed/10935872

    [17] Zhou R Z, Yan J X, Yu X et al[M]. Adaptive optics, 15-17(1996).

    [18] Wu J L, Ke X Z. Adaptive optics correction of wavefront sensorless[J]. Laser & Optoelectronics Progress, 55, 030103(2018).

    [19] Cheng Y, Huang D J, Fan W. Beam shaping capability of amplitude spatial light modulator by electrical addressing[J]. Chinese Journal of Lasers, 44, 0405001(2017).

    Xizheng Ke, Kena Han. Wavefront Simulation and Wavefront Correction of Liquid Crystal Spatial Light Modulator[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051403
    Download Citation