• Laser & Optoelectronics Progress
  • Vol. 59, Issue 6, 0617011 (2022)
Yuting Su and Hongwei Gai*
Author Affiliations
  • School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou , Jiangsu 221116, China
  • show less
    DOI: 10.3788/LOP202259.0617011 Cite this Article Set citation alerts
    Yuting Su, Hongwei Gai. Single Molecule Counting Immunoassay[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617011 Copy Citation Text show less
    References

    [1] Denny J C, Collins F S. Precision medicine in 2030: seven ways to transform healthcare[J]. Cell, 184, 1415-1419(2021).

    [2] Li B, Severson E, Pignon J C et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy[J]. Genome Biology, 17, 174(2016).

    [3] Lambert T, Verlingue L, Colmet-Daage L et al. Pan-tumor prognostic value of multiple immune protein expressions[J]. Journal of Clinical Oncology, 37, 2618(2019).

    [4] Zeng L, Guo L L, Wang Z X et al. Immunoassays for the rapid detection of pantothenic acid in pharmaceutical and food products[J]. Food Chemistry, 348, 129114(2021).

    [5] Yalow R S, Berson S A. Immunoassay of endogenous plasma insulin in man[J]. The Journal of Clinical Investigation, 39, 1157-1175(1960).

    [6] Thaxton C S, Elghanian R, Thomas A D et al. Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 18437-18442(2009).

    [7] Wilson D H, Hanlon D W, Provuncher G K et al. Fifth-generation digital immunoassay for prostate-specific antigen by single molecule array technology[J]. Clinical Chemistry, 57, 1712-1721(2011).

    [8] Chang L, Song L N, Fournier D R et al. Simple diffusion-constrained immunoassay for p24 protein with the sensitivity of nucleic acid amplification for detecting acute HIV infection[J]. Journal of Virological Methods, 188, 153-160(2013).

    [9] Wu G X, Cheney C, Huang Q et al. Improved detection of HIV gag p24 protein using a combined immunoprecipitation and digital ELISA method[J]. Frontiers in Microbiology, 12, 636703(2021).

    [10] Struyfs H, van Broeck B, Timmers M et al. Diagnostic accuracy of cerebrospinal fluid amyloid-β isoforms for early and differential dementia diagnosis[J]. Journal of Alzheimer’s Disease: JAD, 45, 813-822(2015).

    [11] Liu X J, Tu Y, Gai H W. Imaging of single molecules by wide-field optical microscopy[J]. Progress in Chemistry, 25, 370-379(2013).

    [12] Liu X J, Zhang Y S, Liang A Y et al. Plasmonic resonance energy transfer from a Au nanosphere to quantum dots at a single particle level and its homogenous immunoassay[J]. Chemical Communications, 55, 11442-11445(2019).

    [13] Basu A S. Digital assays part II: digital protein and cell assays[J]. SLAS Technology, 22, 387-405(2017).

    [14] Hwang J, Banerjee M, Venable A S et al. Quantitation of low abundant soluble biomarkers using high sensitivity Single Molecule Counting technology[J]. Methods, 158, 69-76(2019).

    [15] O’Connell G C, Alder M L, Smothers C G et al. Use of high-sensitivity digital ELISA improves the diagnostic performance of circulating brain-specific proteins for detection of traumatic brain injury during triage[J]. Neurological Research, 42, 346-353(2020).

    [16] Ma Y F, Shortreed M R, Li H L et al. Single-molecule immunoassay and DNA diagnosis[J]. ELECTROPHORESIS, 22, 421-426(2001).

    [17] Gai H W, Bai J L, Lin B C. Single molecule capillary electrophoresis[J]. Chinese Journal of Analytieal Chemistry, 30, 869-874(2002).

    [18] Rissin D M, Kan C W, Campbell T G et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations[J]. Nature Biotechnology, 28, 595-599(2010).

    [19] Rissin D M, Kan C W, Song L N et al. Multiplexed single molecule immunoassays[J]. Lab on a Chip, 13, 2902-2911(2013).

    [20] Liu C C, Xu X N, Li B et al. Single-exosome-counting immunoassays for cancer diagnostics[J]. Nano Letters, 18, 4226-4232(2018).

    [21] Tian S B, Zhang Z, Chen J Y et al. Digital analysis with droplet-based microfluidic for the ultrasensitive detection of β-gal and AFP[J]. Talanta, 186, 24-28(2018).

    [22] Akama K, Shirai K, Suzuki S. Droplet-free digital enzyme-linked immunosorbent assay based on a tyramide signal amplification system[J]. Analytical Chemistry, 88, 7123-7129(2016).

    [23] Liu X J, Huang C H, Dong X L et al. Asynchrony of spectral blue-shifts of quantum dot based digital homogeneous immunoassay[J]. Chemical Communications, 54, 13103-13106(2018).

    [24] Liu X J, Huang C H, Zong C H et al. A single-molecule homogeneous immunoassay by counting spatially “overlapping” two-color quantum dots with wide-field fluorescence microscopy[J]. ACS Sensors, 3, 2644-2650(2018).

    [25] Akama K, Iwanaga N, Yamawaki K et al. Wash- and amplification-free digital immunoassay based on single-particle motion analysis[J]. ACS Nano, 13, 13116-13126(2019).

    [26] Akama K, Noji H. Multiplexed homogeneous digital immunoassay based on single-particle motion analysis[J]. Lab on a Chip, 20, 2113-2121(2020).

    [27] Akama K, Noji H. Multiparameter single-particle motion analysis for homogeneous digital immunoassay[J]. The Analyst, 146, 1303-1310(2021).

    [28] Chen H, Li Z, Zhang L Z et al. Quantitation of femtomolar-level protein biomarkers using a simple microbubbling digital assay and bright-field smartphone imaging[J]. Angewandte Chemie, 58, 13922-13928(2019).

    [29] Zhang Q Q, Zhang X B, Li J J et al. Nonstochastic protein counting analysis for precision biomarker detection: suppressing poisson noise at ultralow concentration[J]. Analytical Chemistry, 92, 654-658(2020).

    [30] Chatterjee T, Knappik A, Sandford E et al. Direct kinetic fingerprinting and digital counting of single protein molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 22815-22822(2020).

    [31] He L Q, Tessier D R, Briggs K et al. Digital immunoassay for biomarker concentration quantification using solid-state nanopores[J]. Nature Communications, 12, 5348(2021).

    [32] Hu Z L, Huo M Z, Ying Y L et al. Biological nanopore approach for single-molecule protein sequencing[J]. Angewandte Chemie, 60, 14738-14749(2021).

    [33] Zhang Q Q, Li J J, Pan X Y et al. Low-numerical aperture microscope objective boosted by liquid-immersed dielectric microspheres for quantum dot-based digital immunoassays[J]. Analytical Chemistry, 93, 12848-12853(2021).

    [34] Farka Z, Mickert M J, Hlaváček A et al. Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers[J]. Analytical Chemistry, 89, 11825-11830(2017).

    [35] Salehi-Reyhani A. Evaluating single molecule detection methods for microarrays with high dynamic range for quantitative single cell analysis[J]. Scientific Reports, 7, 17957(2017).

    [36] Smith L, Kohli M, Smith A M. Expanding the dynamic range of fluorescence assays through single-molecule counting and intensity calibration[J]. Journal of the American Chemical Society, 140, 13904-13912(2018).

    [37] Wilson B D, Soh H T. Re-evaluating the conventional wisdom about binding assays[J]. Trends in Biochemical Sciences, 45, 639-649(2020).

    [38] Schallmeiner E, Oksanen E, Ericsson O et al. Sensitive protein detection via triple-binder proximity ligation assays[J]. Nature Methods, 4, 135-137(2007).

    [39] Chang L, Rissin D M, Fournier D R et al. Single molecule enzyme-linked immunosorbent assays: theoretical considerations[J]. Journal of Immunological Methods, 378, 102-115(2012).

    [40] Macdonald P J, Ruan Q Q, Tetin S Y. Direct single-molecule counting for immunoassay applications[J]. Analytical Biochemistry, 566, 139-145(2019).

    [41] Mickert M J, Farka Z, Kostiv U et al. Upconversion-linked immunosorbent assay measures subfemtomolar concentrations of prostate-specific antigen through single-molecule counting[J]. Analytical Chemistry, 91, 9435-9441(2019).

    [42] Todd J, Freese B, Lu A et al. Ultrasensitive flow-based immunoassays using single-molecule counting[J]. Clinical Chemistry, 53, 1990-1995(2007).

    [43] Chen H X, Busnel J M, Peltre G et al. Magnetic beads based immunoaffinity capillary electrophoresis of total serum IgE with laser-induced fluorescence detection[J]. Analytical Chemistry, 80, 9583-9588(2008).

    [44] Wellner E F, Kalish H. A chip-based immunoaffinity capillary electrophoresis assay for assessing hormones in human biological fluids[J]. Electrophoresis, 29, 3477-3483(2008).

    [45] Basu A S. Digital assays part I: partitioning statistics and digital PCR[J]. SLAS Technology, 22, 369-386(2017).

    [46] Rissin D M, Walt D R. Digital readout of target binding with attomole detection limits via enzyme amplification in femtoliter arrays[J]. Journal of the American Chemical Society, 128, 6286-6287(2006).

    [47] Song Y J, Zhao J Y, Cai T et al. Machine learning-based cytokine microarray digital immunoassay analysis[J]. Biosensors and Bioelectronics, 180, 113088(2021).

    [48] Wang X, Cohen L, Wang J et al. Competitive immunoassays for the detection of small molecules using single molecule arrays[J]. Journal of the American Chemical Society, 140, 18132-18139(2018).

    [49] Kim S H, Iwai S, Araki S et al. Large-scale femtoliter droplet array for digital counting of single biomolecules[J]. Lab on a Chip, 12, 4986-4991(2012).

    [50] Huang N T, Hwong Y J, Lai R L. A microfluidic microwell device for immunomagnetic single-cell trapping[J]. Microfluidics and Nanofluidics, 22, 16(2018).

    [51] Barbee K D, Hsiao A P, Heller M J et al. Electric field directed assembly of high-density microbead arrays[J]. Lab on a Chip, 9, 3268-3274(2009).

    [52] Cohen L, Cui N W, Cai Y M et al. Single molecule protein detection with attomolar sensitivity using droplet digital enzyme-linked immunosorbent assay[J]. ACS Nano, 14, 9491-9501(2020).

    [53] Shim J U, Ranasinghe R T, Smith C A et al. Ultrarapid generation of femtoliter microfluidic droplets for single-molecule-counting immunoassays[J]. ACS Nano, 7, 5955-5964(2013).

    [54] Zhang L, Yang Y J, Xiong J Y et al. Absolute quantification of particle number concentration using a digital single particle counting system[J]. Mikrochimica Acta, 186, 529(2019).

    [55] Yelleswarapu V, Buser J R, Haber M et al. Mobile platform for rapid sub-picogram-per-milliliter, multiplexed, digital droplet detection of proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 4489-4495(2019).

    [56] Shi X B, Meng X X, Sun L C et al. Observing photophysical properties of quantum dots in air at the single molecule level: advantages in microarray applications[J]. Lab on a Chip, 10, 2844-2847(2010).

    [57] Zhao W F, Dong S L, Sun L C et al. Investigating the photostability of quantum dots at the single-molecule level[J]. Chemistry, an Asian Journal, 9, 3542-3548(2014).

    [58] Liu X J, Sun Y Y, Lin X Y et al. Digital duplex homogeneous immunoassay by counting immuno complex labeled with quantum dots[J]. Analytical Chemistry, 93, 3089-3095(2021).

    [59] Li X, Wei L, Pan L L et al. Homogeneous immunosorbent assay based on single-particle enumeration using upconversion nanoparticles for the sensitive detection of cancer biomarkers[J]. Analytical Chemistry, 90, 4807-4814(2018).

    [60] Wu C, Garden P M, Walt D R. Ultrasensitive detection of attomolar protein concentrations by dropcast single molecule assays[J]. Journal of the American Chemical Society, 142, 12314-12323(2020).

    [61] Chatterjee T, Li Z, Khanna K et al. Ultraspecific analyte detection by direct kinetic fingerprinting of single molecules[J]. TrAC Trends in Analytical Chemistry, 123, 115764(2020).

    [62] Henry N L, Hayes D F. Cancer biomarkers[J]. Molecular Oncology, 6, 140-146(2012).

    [63] Wu Z, Zhou C H, Pan L J et al. Reliable digital single molecule electrochemistry for ultrasensitive alkaline phosphatase detection[J]. Analytical Chemistry, 88, 9166-9172(2016).

    [64] Jiang Y, Li X, Walt D R. Single-molecule analysis determines isozymes of human alkaline phosphatase in serum[J]. Angewandte Chemie (International Ed. in English), 59, 18010-18015(2020).

    [65] Morasso C, Ricciardi A, Sproviero D et al. Fast quantification of extracellular vesicles levels in early breast cancer patients by Single Molecule Detection Array (SiMoA)[J]. Breast Cancer Research and Treatment, 192, 65-74(2022).

    [66] Wei P, Wu F, Kang B et al. Plasma extracellular vesicles detected by Single Molecule array technology as a liquid biopsy for colorectal cancer[J]. Journal of Extracellular Vesicles, 9, 1809765(2020).

    [67] da Silva A P B, Silva R B M, Goi L D S et al. Experimental models of neuroimmunological disorders: a review[J]. Frontiers in Neurology, 11, 389(2020).

    [68] Cantó E, Barro C, Zhao C et al. Association between serum neurofilament light chain levels and long-term disease course among patients with multiple sclerosis followed up for 12 years[J]. JAMA Neurology, 76, 1359-1366(2019).

    [69] Verberk I M W, Koel-Simmelink M, Twaalfhoven H et al. Ultrasensitive immunoassay allows measurement of serum neurofilament heavy in multiple sclerosis[J]. Multiple Sclerosis and Related Disorders, 50, 102840(2021).

    [70] Schindler P, Grittner U, Oechtering J et al. Serum GFAP and NfL as disease severity and prognostic biomarkers in patients with aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder[J]. Journal of Neuroinflammation, 18, 105(2021).

    [71] Chang X C, Huang W J, Wang L et al. Serum neurofilament light and GFAP are associated with disease severity in inflammatory disorders with aquaporin-4 or myelin oligodendrocyte glycoprotein antibodies[J]. Frontiers in Immunology, 12, 647618(2021).

    [72] Song L N, Lachno D R, Hanlon D et al. A digital enzyme-linked immunosorbent assay for ultrasensitive measurement of amyloid-β 1-42 peptide in human plasma with utility for studies of Alzheimer’s disease therapeutics[J]. Alzheimer’s Research & Therapy, 8, 58(2016).

    [73] Mattsson N, Andreasson U, Zetterberg H et al. Association of plasma neurofilament light with neurodegeneration in patients with alzheimer disease[J]. JAMA Neurology, 74, 557-566(2017).

    [74] Lewczuk P, Ermann N, Andreasson U et al. Plasma neurofilament light as a potential biomarker of neurodegeneration in Alzheimer’s disease[J]. Alzheimer’s Research & Therapy, 10, 71(2018).

    [75] de Wolf F, Ghanbari M, Licher S et al. Plasma tau, neurofilament light chain and amyloid-β levels and risk of dementia; a population-based cohort study[J]. Brain, 143, 1220-1232(2020).

    [76] Emsen B, Villafane G, David J P et al. Clinical impact of dual-tracer FDOPA and FDG PET/CT for the evaluation of patients with parkinsonian syndromes[J]. Medicine, 99, e23060(2020).

    [77] Ng A S L, Tan Y J, Lu Z H et al. Plasma alpha-synuclein detected by single molecule array is increased in PD[J]. Annals of Clinical and Translational Neurology, 6, 615-619(2019).

    [78] Bhumkar A, Magnan C, Lau D et al. Single-molecule counting coupled to rapid amplification enables detection of α-synuclein aggregates in cerebrospinal fluid of parkinson’s disease patients[J]. Angewandte Chemie International Edition, 60, 11874-11883(2021).

    [79] O’Bryant S E, Edwards M, Zhang F et al. Potential two-step proteomic signature for Parkinson’s disease: pilot analysis in the Harvard Biomarkers Study[J]. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 11, 374-382(2019).

    [80] Gao Z Q, Song Y J, Hsiao T Y et al. Machine-learning-assisted microfluidic nanoplasmonic digital immunoassay for cytokine storm profiling in COVID-19 patients[J]. ACS Nano, 15, 18023-18036(2021).

    [81] Norman M, Gilboa T, Ogata A F et al. Ultrasensitive high-resolution profiling of early seroconversion in patients with COVID-19[J]. Nature Biomedical Engineering, 4, 1180-1187(2020).

    [82] Wang Y, Yang Y Z, Chen C et al. One-step digital immunoassay for rapid and sensitive detection of cardiac troponin I[J]. ACS Sensors, 5, 1126-1131(2020).

    [83] Jing W W, Wang Y, Chen C et al. Gradient-based rapid digital immunoassay for high-sensitivity cardiac troponin T (hs-cTnT) detection in 1 μL plasma[J]. ACS Sensors, 6, 399-407(2021).

    [84] Huijser E, Göpfert J, Brkic Z et al. Serum interferon-α2 measured by single-molecule array associates with systemic disease manifestations in Sjögren’s syndrome[J]. Rheumatology, keab688(2021).

    [85] Wilson D H, Rissin D M, Kan C W et al. The simoa HD-1 analyzer: a novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing[J]. Journal of Laboratory Automation, 21, 533-547(2016).

    [86] Fischer S K, Joyce A, Spengler M et al. Emerging technologies to increase ligand binding assay sensitivity[J]. The AAPS Journal, 17, 93-101(2015).

    Yuting Su, Hongwei Gai. Single Molecule Counting Immunoassay[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617011
    Download Citation