• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 1, 39 (2020)
Wen-Long YAO, Xu-Guang GUO*, Yi-Ming ZHU, and Ping LI
Author Affiliations
  • Shanghai Key Lab of Modern Optical Systems, Terahertz Technology Innovation Research Institute, and Engineering Research Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Saence and Technology, Shanghai200093,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.01.007 Cite this Article
    Wen-Long YAO, Xu-Guang GUO, Yi-Ming ZHU, Ping LI. Terahertz beam reconfigurable micro-strip Quasi-Yagi-Uda antenna based on monolayer graphene[J]. Journal of Infrared and Millimeter Waves, 2020, 39(1): 39 Copy Citation Text show less
    References

    [1] J Costantine, Y Tawk, S E Barbin. Reconfigurable antennas: Design and applications, 103, 424-437(2015).

    [2] B Z Wang, S. Xiao, Y. Bai. Researches on pattern reconfigurable antenna and its application in phased array. 2011,, 46-49.

    [3] C G Christodoulou, Y Tawk, S A Lane. Reconfigurable antennas for wireless and space applications. Proc. IEEE, 100, 2250-2261(2012).

    [4] Geim A K and Novoselov K S, The rise of graphene. Nature Mat,, 6, 11-19(2009).

    [5] Geim A K, Graphene: Status and prospects. Science, 324, 1530-1534(2009).

    [6] J B Li, H X Liu, L Wu. The photoelectric property of graphene modified by boron and nitrogen atoms from density functional theory calculation. J. Infrared Millim. Waves, 37, 25-29(2018).

    [7] Q Zhang, L B Tang, R J Li. Graphene oxide: progress in preparation, reduction and application. J. Infrared Millim. Waves, 38, 79-90(2019).

    [8] M Dragoman, A A Muller, D Dragoman. Terahertz antenna based on graphene. Journal of Applied Physics, 107, 104313(2010).

    [9] I Llatser, C Kremers, D N Chigrin. Characterization of graphene-based nano-antennas in the terahertz band, 194-198(2012).

    [10] Y Huang, L S Wu, M Tang. Design of a beam reconfigurable THz antenna with graphene-based switchable high-impedance surface. IEEE Transactions on Nanotechnology, 11, 836-842(2012).

    [11] Z Xu, X D Dong, J Bornemann. Design of a reconfigurable MIMO system for THz communications based on graphene antennas, 4, 609-617(2014).

    [12] Y L Wu, M J Qu, L X Jiao. Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns. AIP Advances, 6, 065308(2016).

    [13] Yagi H, Beam transmission of the ultra-short waves. Proc. IRE, 85, 1864-1874(1997).

    [14] S Zhang, G H Huff, J Feng. A pattern reconfigurable micro-strip parasitic array. IEEE Trans. Antennas Propagat, 52, 2773-2776(2004).

    [15] H Lim S and Ling. Electron. Lett, 43, 1326-1327(2007).

    [16] X S Yang, B Z Wang, W Wu. Yagi patch antenna with dual-band and pattern reconfigurable characteristics. IEEE Antennas Wireless Propag. Lett, 6, 168-171(2007).

    [17] X S Yang, B Z. Wang, Y Zhang. Microw. Opt. Technol. Lett, 42, 296-297(2004).

    [18] Huang J and Densmore A C, Micro-strip Yagi array antenna for mobile satellite vehicle application. IEEE Trans. Antennas Propagat, 39, 1024-1030(1991).

    [19] K Novoselov, A K Geim, S V Morozov. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

    [20] K S Novoselov, S V Morozov, T Mohiuddin. Electronic properties of graphene. Physica Status Solidi (b), 244, 4106-4111(2007).

    [21] L Maeng, S Lim, S J Chae. Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy. Nano Letters, 12, 551-555(2012).

    [22] M Dawlaty, S Shivaraman, J Strait. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Applied Physics Letters, 93, 131905(2008).

    [23] V P Gusynin, S G Sharapov, J P Carbotte. Magneto-optical conductivity in graphene. Journal of Physics: Condensed Matter, 19, 026222(2007).

    [24] J Horng, C F Chen, B Geng. Drude conductivity of Dirac fermions in graphene. Physical Review B, 83, 165113(2010).

    [25] W Liu, R V Aguilar, Y F Hao. Broadband microwave and time-domain terahertz spectroscopy of chemical vapor deposition grown graphene. Journal of Applied Physics, 110, 083510(2011).

    [26] J L Tomaino, A D Jameson, J W Kevek. Terahertz imaging and spectroscopy of large-area single-layer graphene. Optics Express, 19, 141-146(2011).

    [27] L Ren, Q Zhang, J Yao. Terahertz and infrared spectroscopy of gated large-area graphene. Nano Letters, 12, 3711-3715(2012).

    [28] N Rouhi, S Capdevila, D Jain. Terahertz graphene optics. Nano Research, 5, 667-678(2012).

    [29] B Sensate, R Yan, M M Kelly. 1038. ” Nature Communications, 3, 10(2012).

    [30] K S Novoselov, A K Geim, S V Morozov. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197-200(2005).

    [31] J Costantine, Y Tawk, S E Barbin. Reconfigurable antennas: design and applications, 103, 424-437(2015).

    [32] F Liang, Z Z Yang, Y X Xie. Beam-scanning microstrip quasi-YagiUda-antenna based on hybrid metal-graphene materials. IEEE Photonics Technology Letters, 12, 1127-1130(2018).

    [33] Ansoft HFSS. [online](15).

    [34] A B Constantine. Antenna theory: analysis design, third edition. Inc, 811-882(2005).

    [35] J S Blakemore. Semiconducting and other major properties of gallium arsenide. Journal of Applied Physics, 53, 101063(1981).

    Wen-Long YAO, Xu-Guang GUO, Yi-Ming ZHU, Ping LI. Terahertz beam reconfigurable micro-strip Quasi-Yagi-Uda antenna based on monolayer graphene[J]. Journal of Infrared and Millimeter Waves, 2020, 39(1): 39
    Download Citation