• Photonics Research
  • Vol. 10, Issue 10, 2434 (2022)
Navid Bani Hassan1、†, Fahimeh Dehkhoda2、†, Enyuan Xie1, Johannes Herrnsdorf1、*, Michael J. Strain1, Robert Henderson2, and Martin D. Dawson1
Author Affiliations
  • 1Institute of Photonics, Department of Physics, University of Strathclyde, Technology and Innovation Centre, Glasgow G1 1RD, UK
  • 2School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh EH9 3JL, UK
  • show less
    DOI: 10.1364/PRJ.455574 Cite this Article Set citation alerts
    Navid Bani Hassan, Fahimeh Dehkhoda, Enyuan Xie, Johannes Herrnsdorf, Michael J. Strain, Robert Henderson, Martin D. Dawson. Ultrahigh frame rate digital light projector using chip-scale LED-on-CMOS technology[J]. Photonics Research, 2022, 10(10): 2434 Copy Citation Text show less
    References

    [1] A. D. Griffiths, J. Herrnsdorf, J. J. D. McKendry, M. J. Strain, M. D. Dawson. Gallium nitride micro-light-emitting diode structured light sources for multi-modal optical wireless communications systems. Philos. Trans. R. Soc. A, 378, 20190185(2020).

    [2] A. D. Griffiths, J. Herrnsdorf, M. J. Strain, M. D. Dawson. Scalable visible light communications with a micro-LED array projector and high-speed smartphone camera. Opt. Express, 27, 15585-15594(2019).

    [3] X. Li, W. K. Cho, B. Hussain, H. S. Kwok, C. P. Yue. 66-3: micro-LED display with simultaneous visible light communication function. SID Symp. Dig. Tech. Pap., 49, 876-879(2018).

    [4] X. Li, B. Hussain, J. Kang, H. S. Kwok, C. P. Yue. Smart μLED display-VLC system with a PD-based/camera-based receiver for NFC applications. IEEE Photon. J., 11, 7901008(2019).

    [5] X. Li, L. Wu, Z. Liu, B. Hussain, W. C. Chong, K. M. Lau, C. P. Yue. Design and characterization of active matrix LED microdisplays with embedded visible light communication transmitter. J. Lightwave Technol., 34, 3449-3457(2016).

    [6] J. Herrnsdorf, M. J. Strain, E. Gu, R. K. Henderson, M. D. Dawson. Positioning and space-division multiple access enabled by structured illumination with light-emitting diodes. J. Lightwave Technol., 35, 2339-2345(2017).

    [7] M. P. Edgar, G. M. Gibson, M. J. Padgett. Principles and prospects for single-pixel imaging. Nat. Photonics, 13, 13-20(2019).

    [8] A. D. Griffiths, H. Chen, D. D.-U. Li, R. K. Henderson, J. Herrnsdorf, M. D. Dawson, M. J. Strain. Multispectral time-of-flight imaging using light-emitting diodes. Opt. Express, 27, 35485-35498(2019).

    [9] B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, M. J. Padgett. 3D computational imaging with single-pixel detectors. Science, 340, 844-847(2013).

    [10] T. Weise, B. Leibe, L. V. Gool. Fast 3D scanning with automatic motion compensation. IEEE Conference on Computer Vision and Pattern Recognition, 1-8(2007).

    [11] Z.-H. Xu, W. Chen, J. Penuelas, M. Padgett, M.-J. Sun. 1000 fps computational ghost imaging using LED-based structured illumination. Opt. Express, 26, 2427-2434(2018).

    [12] Y. Hu, Q. Chen, S. Feng, C. Zuo. Microscopic fringe projection profilometry: a review. Opt. Lasers Eng., 135, 106192(2020).

    [13] G. M. Gibson, S. D. Johnson, M. J. Padgett. Single-pixel imaging 12 years on: a review. Opt. Express, 28, 28190-28208(2020).

    [14] A. H. Jeorrett, S. L. Neale, D. Massoubre, E. Gu, R. K. Henderson, O. Millington, K. Mathieson, M. D. Dawson. Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells. Opt. Express, 22, 1372-1380(2014).

    [15] B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, R. K. Henderson. A CMOS time-resolved fluorescence lifetime analysis micro-system. Sensors, 9, 9255-9274(2009).

    [16] B. McGovern, R. B. Palmini, N. Grossman, E. M. Drakakis, V. Poher, M. A. A. Neil, P. Degenaar. A new individually addressable micro-LED array for photogenetic neural stimulation. IEEE Trans. Biomed. Circuits Syst., 4, 469-476(2010).

    [17] N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, P. Degenaar. Multi-site optical excitation using ChR2 and micro-LED array. J. Neural Eng., 7, 016004(2010).

    [18] P. F. V. Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglass. A MEMS-based projection display. Proc. IEEE, 86, 1687-1704(1998).

    [19] H. Kawamoto. The history of liquid-crystal displays. Proc. IEEE, 90, 460-500(2002).

    [20] J. Day, J. Li, D. Y. C. Lie, C. Bradford, J. Y. Lin, H. X. Jiang. III-Nitride full-scale high-resolution microdisplays. Appl. Phys. Lett., 99, 031116(2011).

    [21] M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, M. D. Dawson. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photon. Res., 5, A35-A43(2017).

    [22] J. J. D. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, R. K. Henderson. Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses. IEEE Photonics Technol. Lett., 21, 811-813(2009).

    [23] B. R. Rae, C. Griffin, J. McKendry, J. M. Girkin, H. X. Zhang, E. Gu, D. Renshaw, E. Charbon, M. D. Dawson, R. K. Henderson. CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements. J. Phys. D, 41, 094011(2008).

    [24] J. Herrnsdorf, J. J. D. McKendry, E. Xie, M. J. Strain, I. M. Watson, E. Gu, M. D. Dawson. High speed spatial encoding enabled by CMOS-controlled micro-LED arrays. IEEE Photonics Society Summer Topical Meeting Series (SUM), 173-174(2016).

    [25] J. Herrnsdorf, J. J. D. McKendry, S. Zhang, E. Xie, R. Ferreira, D. Massoubre, A. M. Zuhdi, R. K. Henderson, I. Underwood, S. Watson, A. E. Kelly, E. Gu, M. D. Dawson. Active-matrix GaN micro light-emitting diode display with unprecedented brightness. IEEE Trans. Electron Devices, 62, 1918-1925(2015).

    [26] S. Rajbhandari, A. V. N. Jalajakumari, H. Chun, G. Faulkner, K. Cameron, R. Henderson, D. Tsonev, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, R. Ferreira, E. Gu, M. D. Dawson, D. O. Brien. A multigigabit per second integrated multiple-input multiple-output VLC demonstrator. J. Lightwave Technol., 35, 4358-4365(2017).

    [27] S. Zhang, S. Watson, J. J. D. McKendry, D. Massoubre, A. Cogman, E. Gu, R. K. Henderson, A. E. Kelly, M. D. Dawson. 1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs. J. Lightwave Technol., 31, 1211-1216(2013).

    [28] W. Liu, Z. Xu. Some practical constraints and solutions for optical camera communication. Philos. Trans. R. Soc. A, 378, 20190191(2020).

    [29] I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, S. Kawahito. LED and CMOS image sensor based optical wireless communication system for automotive applications. IEEE Photon. J., 5, 6801418(2013).

    [30] B. Razavi. The current-steering DAC [a circuit for all seasons]. IEEE Solid-State Circuits Mag., 10, 11-15(2018).

    [31] Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, A. Faraon. High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas. ACS Photon., 5, 1711-1717(2018).

    [32] Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, H. A. Atwater. Gate-tunable conducting oxide metasurfaces. Nano Lett., 16, 5319-5325(2016).

    [33] A. Smolyaninov, A. El Amili, F. Vallini, S. Pappert, Y. Fainman. Programmable plasmonic phase modulation of free-space wavefronts at gigahertz rates. Nat. Photonics, 13, 431-435(2019).

    [34] Z. Khan, J.-C. Shih, R.-L. Chao, T.-L. Tsai, H.-C. Wang, G.-W. Fan, Y.-C. Lin, J.-W. Shi. High-brightness and high-speed vertical-cavity surface-emitting laser arrays. Optica, 7, 267-275(2020).

    [35] T. Arai, J. Yonai, T. Hayashida, H. Ohtake, H. v. Kuijk, T. G. Etoh. A 252-V/lux·s, 16.7-million-frames-per-second 312-kpixel back-side-illuminated ultrahigh-speed charge-coupled device. IEEE Trans. Electron Devices, 60, 3450-3458(2013).

    [36] https://doi.org/10.15129/b0f4afe8-fa22-444e-a29e-d9b6f754930f. https://doi.org/10.15129/b0f4afe8-fa22-444e-a29e-d9b6f754930f

    Navid Bani Hassan, Fahimeh Dehkhoda, Enyuan Xie, Johannes Herrnsdorf, Michael J. Strain, Robert Henderson, Martin D. Dawson. Ultrahigh frame rate digital light projector using chip-scale LED-on-CMOS technology[J]. Photonics Research, 2022, 10(10): 2434
    Download Citation