• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516006 (2021)
Cong Zhang, Di Yang, Kang Shao, and Zaifa Pan*
Author Affiliations
  • College of Chemical Engineering, Zhejiang University of Technology, Hangzhou , Zhejiang 310014, China
  • show less
    DOI: 10.3788/LOP202158.1516006 Cite this Article Set citation alerts
    Cong Zhang, Di Yang, Kang Shao, Zaifa Pan. Progress in Thermoluminescence Spectroscopy for Characterization of Trap Distribution in Persistent Luminescence Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516006 Copy Citation Text show less
    References

    [1] Xu J, Tanabe S. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective[J]. Journal of Luminescence, 205, 581-620(2019).

    [2] Cheng B C, Wang Z G. Synthesis and optical properties of europium-doped ZnS: long-lasting phosphorescence from aligned nanowires[J]. Advanced Functional Materials, 15, 1883-1890(2005).

    [3] Ueda J, Aishima K, Nishiura S et al. Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics[J]. Applied Physics Express, 4, 042602(2011).

    [4] Yan S C, Wang J J, Gao H L et al. Zinc gallogermanate solid solution: a novel photocatalyst for efficiently converting CO2 into solar fuels[J]. Advanced Functional Materials, 23, 1839-1845(2013).

    [5] Hu L D, Fan Y, Liu L et al. Orthogonal multiplexed luminescence encoding with near-infrared rechargeable upconverting persistent luminescence composites[J]. Advanced Optical Materials, 5, 1700680(2017).

    [6] Terraschke H, Wickleder C. UV, blue, green, yellow, red, and small: newest developments on Eu2+-doped nanophosphors[J]. Chemical Reviews, 115, 11352-11378(2015).

    [7] Smith B R, Gambhir S S. Nanomaterials for in vivo imaging[J]. Chemical Reviews, 117, 901-986(2017).

    [8] Pan Z W, Lu Y Y, Liu F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates[J]. Nature Materials, 11, 58-63(2012).

    [9] Zhang D D, Liu J M, Song N et al. Fabrication of mesoporous La3Ga5GeO14∶Cr3+, Zn2+ persistent luminescence nanocarriers with super-long afterglow for bioimaging-guided in vivo drug delivery to the gut[J]. Journal of Materials Chemistry B, 6, 1479-1488(2018).

    [10] Yamamoto H, Matsuzawa T. Mechanism of long phosphorescence of SrAl2O4∶Eu2+, Dy3+ and CaAl2O4∶Eu2+, Nd3+[J]. Journal of Luminescence, 72/73/74, 287-289(1997).

    [11] Tilley R J D, Liu P S, Tian M B, Zhu Y F[M]. Defects in solids(2013).

    [12] Maldiney T, Lecointre A, Viana B et al. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging[J]. Journal of the American Chemical Society, 133, 11810-11815(2011).

    [13] Wang C L, Jin Y H, Lü Y et al. Trap distribution tailoring guided design of super-long-persistent phosphor Ba2SiO4∶Eu2+, Ho3+ and photostimulable luminescence for optical information storage[J]. Journal of Materials Chemistry C, 6, 6058-6067(2018).

    [14] Wang K, Yan L P, Shao K et al. Near-infrared afterglow enhancement and trap distribution analysis of silicon-chromium co-doped persistent luminescence materials Zn1+xGa2-2xSixO4∶Cr3+[J]. Journal of Inorganic Materials, 34, 983-990(2019).

    [15] Yang X, Chen W B, Wang D S et al. Near-infrared photoluminescence and phosphorescence properties of Cr3+-doped garnet-type Y3Sc2Ga3O12[J]. Journal of Luminescence, 225, 117392(2020).

    [16] Majewska N, Leśniewski T, Mahlik S et al. Study of persistent luminescence and thermoluminescence in SrSi2N2O2∶Eu2+, M3+(M=Ce, Dy, and Nd)[J]. Physical Chemistry Chemical Physics, 22, 17152-17159(2020).

    [17] Lin S S, Lin H, Huang Q M et al. A photostimulated BaSi2O5∶Eu2+,Nd3+ phosphor-in-glass for erasable-rewritable optical storage medium[J]. Laser & Photonics Reviews, 13, 1900006(2019).

    [18] Bos A J J, Dorenbos P, Bessière A et al. Study of TL glow curves of YPO4 double doped with lanthanide ions[J]. Radiation Measurements, 46, 1410-1416(2011).

    [19] Pan C, Zhang J C, Zhang M et al. Intrinsic oxygen vacancies mediated multi-mechano-responsive piezoluminescence in undoped zinc calcium oxysulfide[J]. Applied Physics Letters, 110, 233904(2017).

    [20] Gao Y, Li R F, Zheng W et al. Broadband NIR photostimulated luminescence nanoprobes based on CaS∶Eu2+, Sm3+ nanocrystals[J]. Chemical Science, 10, 5452-5460(2019).

    [21] Aitasalo T, Hölsä J, Jungner H et al. Effect of temperature on the luminescence processes of SrAl2O4∶Eu2+[J]. Radiation Measurements, 38, 727-730(2004).

    [22] Aitasalo T, Hölsä J, Jungner H et al. Thermoluminescence study of persistent luminescence materials: Eu2+-and R3+-doped calcium aluminates, CaAl2O4∶Eu2+, R3+[J]. The Journal of Physical Chemistry B, 110, 4589-4598(2006).

    [23] Wang W X, Sun Z Y, He X Y et al. How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4∶Bi3+, Eu3+ phosphor[J]. Journal of Materials Chemistry C, 5, 4310-4318(2017).

    [24] Li W H, Zhuang Y X, Zheng P et al. Tailoring trap depth and emission wavelength in Y3Al5-xGaxO12∶Ce3+, V3+ phosphor-in-glass films for optical information storage[J]. ACS Applied Materials & Interfaces, 10, 27150-27159(2018).

    [25] Kafadar V E, Yeşilkaynak T, Demirdogen R E et al. The effect of Dy3+ doping on the thermoluminescence properties of Ba2SiO4[J]. International Journal of Applied Ceramic Technology, 17, 1453-1459(2020).

    [26] Gieszczyk W, Kulig D, Bilski P et al. Analysis of TL and OSL kinetics in lithium magnesium phosphate crystals[J]. Radiation Measurements, 106, 100-106(2017).

    [27] Pimpalshende D M, Dhoble S J. Evaluation of trapping parameters of γ-rays irradiated Dy3+-doped LaPO4 phosphors[J]. Luminescence, 29, 1019-1026(2014).

    [28] Dorenbos P, Bos A J J. Lanthanide level location and related thermoluminescence phenomena[J]. Radiation Measurements, 43, 139-145(2008).

    [29] Feng X Q, Han X Z. Research progress of defects in Ti∶sapphire laser crystals[J]. Laser & Optoelectronics Progress, 57, 230001(2020).

    [30] Wu S L, Pan Z F, Chen R F et al. Organic afterglow phosphors[M]. Long afterglow phosphorescent materials, springerbriefs in materials, 117-151(2017).

    [31] Pohlit W. On thermoluminescence in lithium fluoride. I. measurement of activation energy of electrons in different traps[J]. Biophysik, 5, 341-350(1969).

    [32] Li Y, Gecevicius M, Qiu J R. Long persistent phosphors: from fundamentals to applications[J]. Chemical Society Reviews, 45, 2090-2136(2016).

    [33] Bos A J J, Dorenbos P, Bessière A et al. Lanthanide energy levels in YPO4[J]. Radiation Measurements, 43, 222-226(2008).

    [34] Chen R, Pagonis V. On the quasi-equilibrium assumptions in the theory of thermoluminescence (TL)[J]. Journal of Luminescence, 143, 734-740(2013).

    [35] Zuo M W, Shi Z W, Li H G. Interaction of two Airy-Gaussian beams in nonlocal nonlinear medium with defected lattices[J]. Laser & Optoelectronics Progress, 57, 051901(2020).

    [36] Yue F Y, Mao F, Wang H et al. Infrared defect emission and thermal effect in high power diode lasers[J]. Laser & Optoelectronics Progress, 56, 110001(2019).

    [37] Chen R, Pagonis V. The role of simulations in the study of thermoluminescence (TL)[J]. Radiation Measurements, 71, 8-14(2014).

    [38] Ortega F, Santiago M, Martinez N et al. On the analysis of glow curves with the general order kinetics: reliability of the computed trap parameters[J]. Journal of Luminescence, 184, 38-43(2017).

    [39] Halperin A, Braner A A. Evaluation of thermal activation energies from glow curves[J]. Physical Review, 117, 408-415(1960).

    [40] Dussel G A, Bube R H. Theory of thermally stimulated conductivity in a previously photoexcited crystal[J]. Physical Review, 155, 764-779(1967).

    [41] Hornyak W F, Chen R. Thermoluminescence and phosphorescence with a continuous distribution of activation energies[J]. Journal of Luminescence, 44, 73-81(1989).

    [42] Randall J T, Wilkins M H F. Phosphorescence and electron traps: I. the study of trap distributions[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 184, 365-389(1945).

    [43] Randall J T, Wilkins M H F. Phosphorescence and electron traps: II. the interpretation of long-period phosphorescence[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 184, 390-407(1945).

    [44] Garlick G J, Gibson A F. The electron trap mechanism of luminescence in sulphide and silicate phosphors[J]. Proceedings of the Physical Society, 60, 574-590(1948).

    [45] May C E, Partridge J A. Thermoluminescent kinetics of alpha-irradiated alkali halides[J]. The Journal of Chemical Physics, 40, 1401-1409(1964).

    [46] Bos A J J. Theory of thermoluminescence[J]. Radiation Measurements, 41, S45-S56(2006).

    [47] Hornyak W F, Chen R. Thermoluminescence and phosphorescence with a continuous distribution of activation energies[J]. Journal of Luminescence, 44, 73-81(1989).

    [48] Rasheedy M S. On the general-order kinetics of the thermoluminescence glow peak[J]. Journal of Physics: Condensed Matter, 5, 633-636(1993).

    [49] Bos A. Thermoluminescence as a research tool to investigate luminescence mechanisms[J]. Materials, 10, 1357(2017).

    [50] Allison S W. A brief history of phosphor thermometry[J]. Measurement Science and Technology, 30, 072001(2019).

    [51] Hoogenstraaten W[M]. Der nicht-elektronische energietransport in phosphoren(1958).

    [52] Chen R. On the calculation of activation energies and frequency factors from glow curves[J]. Journal of Applied Physics, 40, 570-585(1969).

    [53] Chen R. Glow curves with general order kinetics[J]. Journal of the Electrochemical Society, 116, 1254-1257(1969).

    [54] Pagonis V, Kitis G, Furetta C[M]. Numerical and practical exercises in thermoluminescence(2006).

    [55] Chen R, McKeever S W S[M]. Theory of thermoluminescence and related phenomena(1997).

    [56] Gobrecht H, Hofmann D. Spectroscopy of traps by fractional glow technique[J]. Journal of Physics and Chemistry of Solids, 27, 509-522(1966).

    [57] McKeever S W S. On the analysis of complex thermoluminescence. Glow-curves: resolution into individual peaks[J]. Physica Status Solidi (a), 62, 331-340(1980).

    [58] van den Eeckhout K, Bos A J J, Poelman D et al. Revealing trap depth distributions in persistent phosphors[J]. Physical Review B, 87, 045126(2013).

    [59] Chung K S[M]. TL glow curve analyzer(2003).

    [60] van der Heggen D, Vandenberghe D, Moayed N K et al. The almost hidden role of deep traps when measuring afterglow and thermoluminescence of persistent phosphors[J]. Journal of Luminescence, 226, 117496(2020).

    Cong Zhang, Di Yang, Kang Shao, Zaifa Pan. Progress in Thermoluminescence Spectroscopy for Characterization of Trap Distribution in Persistent Luminescence Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516006
    Download Citation