• Infrared and Laser Engineering
  • Vol. 50, Issue 3, 20210033 (2021)
Liang Mei1, Zheng Kong1, Hongze Lin2, Ruonan Fei1, Yuan Cheng1, Zhenfeng Gong1, Ke Chen1, Kun Liu1, and Dengxin Hua1、3
Author Affiliations
  • 1School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
  • 2School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
  • 3School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi’an 710048, China
  • show less
    DOI: 10.3788/IRLA20210033 Cite this Article
    Liang Mei, Zheng Kong, Hongze Lin, Ruonan Fei, Yuan Cheng, Zhenfeng Gong, Ke Chen, Kun Liu, Dengxin Hua. Recent advancements of the lidar technique based on the Scheimpflug imaging principle (Invited)[J]. Infrared and Laser Engineering, 2021, 50(3): 20210033 Copy Citation Text show less
    References

    [1] T Nishizawa, N Sugimoto, I Matsui, et al. Ground-based network observation using Mie-Raman lidars and multi-wavelength Raman lidars and algorithm to retrieve distributions of aerosol components. Journal of Quantitative Spectroscopy & Radiative Transfer, 188, 79-93(2017).

    [2] L Mei, M Brydegaard. Continuous-wave differential absorption lidar. Laser & Photonics Reviews, 9, 629-636(2015).

    [3] M Brydegaard, A Gebru, S Svanberg. Super resolution laser radar with blinking atmospheric particles-application to interacting flying insects. Progress in Electromagnetics Research-Pier, 147, 141-151(2014).

    [4] L Mei, P Guan, Y Yang, et al. Atmospheric extinction coefficient retrieval and validation for the single-band Mie-Scattering Scheimpflug lidar technique. Optics Express, 25, A628-A638(2017).

    [5] L Mei, M Brydegaard. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system. Optics Express, 23, 1613-1628(2015).

    [6] L Mei, L S Zhang, Z Kong, et al. Noise modeling, evaluation and reduction for the atmospheric lidar technique employing an image sensor. Optics Communications, 426, 463-470(2018).

    [7] Z F Liu, C G Yang, Z F Gong, et al. Adaptive digital filter for the processing of atmospheric lidar signals measured by imaging lidar techniques. Applied Optics, 59, 9454-9463(2020).

    [8] L Mei, T Ma, Z Kong, et al. Comparison studies of the Scheimpflug lidar technique and the pulsed lidar technique for atmospheric aerosol sensing. Applied Optics, 58, 8981-8992(2019).

    [9] L Mei, T Ma, Z Zhang, et al. Experimental calibration of the overlap factor for the pulsed atmospheric lidar by employing a collocated Scheimpflug idar. Remote Sensing, 12, 1227(2020).

    [10] Z Kong, T Ma, K Chen, et al. Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols. Applied Optics, 58, 8612-8621(2019).

    [11] Z Liu, L M Li, H Li, et al. Preliminary studies on atmospheric monitoring by employing a portable unmanned Mie-scattering Scheimpflug lidar system. Remote Sensing, 11, 1-15(2019).

    [12] L Mei, Z Kong, T Ma. Dual-wavelength Mie-scattering Scheimpflug lidar system developed for the studies of the aerosol extinction coefficient and the angstrom exponent. Optics Express, 26, 31942-31956(2018).

    [13] Z Kong, T Ma, Y Cheng, et al. Feasibility investigation of a monostatic imaging lidar with a parallel-placed image sensor for atmospheric remote sensing. Journal of Quantitative Spectroscopy and Radiative Transfer, 254, 107212(2020).

    [14] L Mei, M Brydegaard. Atmospheric aerosol monitoring by an elastic scheimpflug lidar system. Optics Express, 23, 247841(2015).

    [15] L Mei, Z Kong, P Guan. Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies. Optics Express, 26, A260-A274(2018).

    [16] Z Kong, Z Liu, L S Zhang, et al. Atmospheric pollution monitoring in urban area by employing a 450 nm lidar system. Sensors, 18, 1-12(2018).

    [17] Kong Z, Guan P, Mei L. A greenb scheimpflug lidar systemfeasibility studies f atmospheric remote sensing[C] Optical Sensing Imaging Technologies Applications, 2018, 10846: 16.

    [18] G D Sun, L A Qin, Z H Hou, et al. Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection. Optics Express, 26, 7423-7436(2018).

    [19] L Mei, Y C Li, Z Kong, et al. Mini-Scheimpflug lidar system for all-day atmospheric remote sensing in the boundary layer. Applied Optics, 59, 6729-6736(2020).

    [20] L Mei, P Guan. Development of an atmospheric polarization Scheimpflug lidar system based on a time-division multiplexing scheme. Optics Letters, 42, 3562-3565(2017).

    [21] Z Kong, T Ma, Y Cheng, et al. A calibration-free polarization imaging lidar developed for atmospheric remote sensing. Journal of Quantitative Spectroscopy and Radiative Transfer, under review(2020).

    [22] Z Kong, Z Yin, Y Cheng, et al. Modeling and evaluation of the systematic errors for the polarization-sensitive imaging lidar technique. Remote Sensing, 12, 3309(2020).

    [23] R R Neely, M Hayman, R Stillwell, et al. Polarization Lidar at Summit, Greenland, for the detection of cloud phase and particle orientation. Journal of Atmospheric and Oceanic Technology, 30, 1635-1655(2013).

    [24] L Mei, L M Li, Z Liu, et al. Detection of the planetary boundary layer height by employing the Scheimpflug lidar technique and the covariance wavelet transform method. Applied Optics, 58, 8013-8020(2019).

    [25] G Y Zhao, E Malmqvist, S Torok, et al. Particle profiling and classification by a dual-band continuous-wave lidar system. Applied Optics, 57, 10164-10171(2018).

    [26] Y Y Zhang, J Wang, L B Bu. Analysis of a haze event over Nanjing, China based on multi-source data. Atmosphere, 10, 1-17(2019).

    [27] D Muller, A Ansmann, I Mattis, et al. Aerosol-type-dependent lidar ratios observed with Raman lidar. Journal of Geophysical Research-Atmospheres, 112, 1-11(2007).

    [28] J T Sullivan, T J McGee, G K Sumnicht, et al. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington, Dc Region. Atmospheric Measurement Techniques, 7, 3529-3548(2014).

    [29] M Beniston, J P Wolf, M Benistonrebetez, et al. Use of lidar measurements and numerical-models in air-pollution research. Journal of Geophysical Research-Atmospheres, 95, 9879-9894(1990).

    [30] T Fukuchi, T Nayuki, N W Cao, et al. Differential absorption lidar system for simultaneous measurement of O-3 and NO2: System development and measurement error estimation. Optical Engineering, 42, 98-104(2003).

    [31] Z G Guan, P Lundin, L Mei, et al. Vertical lidar sounding of atomic mercury and nitric oxide in a major Chinese city. Appl Phys B, 101, 465-470(2010).

    [32] L Mei, G Y Zhao, S Svanberg. Differential absorption lidar system employed for background atomic mercury vertical profiling in South China. Optics and Lasers in Engineering, 55, 128-135(2014).

    [33] S Hu, H Hu, Y Zhang, et al. A new differential absorption lidar for NO2 measurements using Raman-shifted technique. Chinese Optics Letters, 1, 435(2003).

    [34] G Fan, T Zhang, Y Fu, et al. Temporal and spatial distribution characteristics of ozone based on differential absorption lidar in Beijing. Chinese Journal of Lasers, 41, 1014003(2014).

    [35] W Gong, X Ma, G Han, et al. Method for wavelength stabilization of pulsed difference frequency laser at 1572 Nm for Co2 detection lidar. Optics Express, 23, 6151-6170(2015).

    [36] H Liu, T Chen, R Shu, et al. Wavelength-locking-free 1.57 μm differential absorption lidar for CO2 Sensing. Optics Express, 22, 27675-27680(2014).

    [37] L Mei, P Guan, Z Kong. Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique. Optics Express, 25, A953-A962(2017).

    [38] Y Cheng, Z Zhang, Z Kong, et al. Evaluation of systematic errors for the continuous-wave NO2 differential absorption lidar employing a multimode laser diode. Applied Optics, 59, 9087-9097(2020).

    [39] J Larsson, J Bood, C T Xu, et al. Atmospheric CO2 Sensing using Scheimpflug-lidar based on a 1.57-Mu M fiber source. Optics Express, 27, 17348-17358(2019).

    [40] F Gao, H Z Lin, K Chen, et al. Light-sheet based two-dimensional Scheimpflug lidar system for profile measurements. Optics Express, 26, 27179-27188(2018).

    [41] K Chen, F Gao, X Chen, et al. Overwater light-sheet Scheimpflug lidar system for an underwater three-dimensional profile bathymetry. Applied Optics, 58, 7643-7648(2019).

    [42] G Y Zhao, M Ljungholm, E Malmqvist, et al. Inelastic hyperspectral lidar for profiling aquatic ecosystems. Laser & Photonics Reviews, 10, 807-813(2016).

    [43] F Gao, J W Li, H Z Lin, et al. Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system. Optics Express, 25, 25515-25522(2017).

    [44] Z Duan, Y Yuan, J C Lu, et al. Underwater spatially, spectrally, and temporally resolved optical monitoring of aquatic fauna. Optics Express, 28, 2600-2610(2020).

    [45] J Yang, J Sun, L Du, et al. Effect of fluorescence characteristics and different algorithms on the estimation of leaf nitrogen content based on laser-induced fluorescence lidar in paddy rice. Optics Express, 25, 3743-3755(2017).

    [46] X Wang, Z Duan, M Brydegaard, et al. Drone-based area scanning of vegetation fluorescence height profiles using a miniaturized hyperspectral lidar system. Applied Physics B-Lasers and Optics, 124, 1-5(2018).

    [47] H Z Lin, Y Zhang, L Mei. Fluorescence Scheimpflug lidar developed for the three-dimension profiling of plants. Optics Express, 28, 9269-9279(2020).

    [48] S G Potts, J C Biesmeijer, C Kremen, et al. Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution, 25, 345-353(2010).

    [49] Lehane M J, The Biology of BloodSucking in Insects[M]. 2nd ed. Cambridge: Cambridge University Press, 2005.

    [50] C J L Murray, L C Rosenfeld, S S Lim, et al. Global malaria mortality between 1980 and 2010: A systematic analysis. Lancet, 379, 413-431(2012).

    [51] M Brydegaard, S Svanberg. Photonic monitoring of atmospheric and aquatic fauna. Laser & Photonics Reviews, 12, 1-28(2018).

    [52] C Kirkeby, M Wellenreuther, M Brydegaard. Observations of movement dynamics of flying insects using high resolution lidar. Scientific Reports, 6, 1-11(2016).

    [53] Brydegaard M, Malmqvist E, Jansson S, et al. The Scheimpflug Lidar Method[C]Lidar Remote Sensing f Environmental Moniting, 2017, 10406: 117.

    [54] S Jansson, E Malmqvist, M Brydegaard, et al. A Scheimpflug lidar used to observe insect swarming at a wind turbine. Ecological Indicators, 117, 1-7(2020).

    [55] M Brydegaard, S Jansson, E Malmqvist, et al. Lidar Reveals Activity Anomaly of Malaria Vectors During Pan-African Eclipse. Science Advances, 6, 1-9(2020).

    [56] Zhu S, Malmqvist E, Li Y, et al. Insect remote sensing using a polarization sensitive CW lidar system in chinese rice fields[C]EPJ Web of Conferences, 2018, 176: 07001.

    [57] E Malmqvist, S Jansson, S M Zhu, et al. The bat-bird-bug battle: Daily flight activity of insects and their predators over a rice field revealed by high-resolution Scheimpflug lidar. Royal Society Open Science, 5, 1-12(2018).

    [58] Z W Song, B X Zhang, H Q Feng, et al. Application of lidar remote sensing of insects in agricultural entomology on the Chinese scene. Journal of Applied Entomology, 144, 161-169(2020).

    [59] S M Zhu, E Malmqvist, W S Li, et al. Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive cw near-IR lidar system. Applied Physics B-Lasers and Optics, 123, 1-11(2017).

    [60] B Li, D Y Zhang, J X Liu, et al. A review of femtosecond laser-induced emission techniques for combustion and flow field diagnostics. Applied Sciences-Basel, 9, 1-25(2019).

    [61] E Malmqvist, M Brydegaard, M Alden, et al. Scheimpflug lidar for combustion diagnostics. Optics Express, 26, 14842-14858(2018).

    [62] E Malmqvist, J Borggren, M Alden, et al. Lidar thermometry using two-line atomic fluorescence. Applied Optics, 58, 1128-1133(2019).

    [63] Y Zhang, H Zhang, S Wu. Design of water Scheimpflug lidar technology used for measuring small angle backscattering. Acta Optica Sinica, 40, 1101004(2020).

    Liang Mei, Zheng Kong, Hongze Lin, Ruonan Fei, Yuan Cheng, Zhenfeng Gong, Ke Chen, Kun Liu, Dengxin Hua. Recent advancements of the lidar technique based on the Scheimpflug imaging principle (Invited)[J]. Infrared and Laser Engineering, 2021, 50(3): 20210033
    Download Citation