Single-shot spectral-volumetric compressed ultrafast photography|On the CoverPengpeng Ding, Yunhua Yao, Dalong Qi, Chengshuai Yang, Fengyan Cao, Yilin He, Jiali Yao, Chengzhi Jin, Zhengqi Huang, Li Deng, Lianzhong Deng, Tianqing Jia, Jinyang Liang, Zhenrong Sun, and Shian Zhang
In ultrafast optical imaging, it is critical to obtain the spatial structure, temporal evolution, and spectral composition of the object with snapshots in order to better observe and understand unrepeatable or irreversible dynamic scenes. However, so far, there are no ultrafast optical imaging techniques that can simultaneously capture the spatial–temporal–spectral five-dimensional (5D) information of dynamic scenes. To break the limitation of the existing techniques in imaging dimensions, we develop a spectral-volumetric compressed ultrafast photography (SV-CUP) technique. In our SV-CUP, the spatial resolutions in the x, y and z directions are, respectively, 0.39, 0.35, and 3 mm with an 8.8 mm × 6.3 mm field of view, the temporal frame interval is 2 ps, and the spectral frame interval is 1.72 nm. To demonstrate the excellent performance of our SV-CUP in spatial–temporal–spectral 5D imaging, we successfully measure the spectrally resolved photoluminescent dynamics of a 3D mannequin coated with CdSe quantum dots. Our SV-CUP brings unprecedented detection capabilities to dynamic scenes, which has important application prospects in fundamental research and applied science. In ultrafast optical imaging, it is critical to obtain the spatial structure, temporal evolution, and spectral composition of the object with snapshots in order to better observe and understand unrepeatable or irreversible dynamic scenes. However, so far, there are no ultrafast optical imaging techniques that can simultaneously capture the spatial–temporal–spectral five-dimensional (5D) information of dynamic scenes. To break the limitation of the existing techniques in imaging dimensions, we develop a spectral-volumetric compressed ultrafast photography (SV-CUP) technique. In our SV-CUP, the spatial resolutions in the x, y and z directions are, respectively, 0.39, 0.35, and 3 mm with an 8.8 mm × 6.3 mm field of view, the temporal frame interval is 2 ps, and the spectral frame interval is 1.72 nm. To demonstrate the excellent performance of our SV-CUP in spatial–temporal–spectral 5D imaging, we successfully measure the spectrally resolved photoluminescent dynamics of a 3D mannequin coated with CdSe quantum dots. Our SV-CUP brings unprecedented detection capabilities to dynamic scenes, which has important application prospects in fundamental research and applied science.showLess Advanced Photonics
- Publication Date: Jun. 18, 2021
- Vol. 3, Issue 4, 045001 (2021)